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Abstract

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are

integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform tempe-

rature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration

algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the trans-

verse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-

mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary

conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also

undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature

change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of smart materials, as sensors and actuators, for the control of the mechanical behavior of smart

structural systems, is becoming more prevalent. Some examples of the smart materials deployed include

piezoelectrics, shape memory alloys and rheological-fluids. Here, we aim to investigate the buckling and

postbuckling behaviors of piezoelectric functionally graded material (FGM) hybrid plates, a study which

has not been previously conducted.
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FGMs are microscopically inhomogeneous composites that were developed by Japanese scientists in the

late 1980s. By smoothly changing the volume fraction of the material constituents, the material properties

of FGMs exhibit a continuous variation from one surface to the other, thus eliminating the interface

problem that usually takes place in homogeneous composites. The macro-responses of FGM plate struc-
tures under thermal and/or mechanical loading have gained increasing attention in recent years, especially

from Tanigawa et al. (1991), Praveen and Reddy (1998), Reddy (2000), Shen (2002), Yang and Shen

(2002a), and Liew and Liang (2002). However, the investigation of buckling and postbuckling behavior is

scarce. Feldman and Aboudi (1997) made the first attempt when they discussed the elastic buckling of

uniaxially compressed FGM plates with the volume fractions of the constituents being the function of

spatial co-ordinates ðx; y; zÞ. Solutions for plates with simply supported and clamped edges were obtained.

However, some of the results are questionable because, in most cases, no bifurcational buckling could occur

due to the bending–stretching coupling effect in FGM plates. Most recently, Yang and Shen (2002b) in-
vestigated the postbuckling behavior of FGM rectangular plates under transverse and in-plane loads by

using a semi-analytical DQ-based perturbation technique. In these two analyses, classical plate theory

(CPT) was used, and thermal load due to temperature variation was not taken into consideration.

Many studies have reported on the modeling and analysis of smart structures that incorporate surface-

bonded or embedded adaptive piezoelectric materials with composite substrates, as reviewed by Chee et al.

(1998) and Irschik (2002). In terms of the postbuckling deformation of laminated plates with piezoelectric

effects, Oh et al. (2000) presented non-linear finite element formulations for the postbuckling of fully

symmetric and partially eccentric piezolaminated composite plates by using layerwise laminated theory.
Shen investigated the thermal postbuckling (Shen, 2001a) and thermo-mechanical postbuckling responses

(Shen, 2001b) of simply supported, imperfect shear deformable rectangular plates that were covered with

piezoelectric actuators. Reddy�s higher-order shear deformation plate theory (HSDT) and a mixed

Galerkin-perturbation approach were used. As far as the authors are aware, only a few papers in the lite-

rature deal with the structural responses of FGM plates with piezoelectric effects (Ootao and Tanigawa,

2000; He et al., 2001, 2002; Liew et al., 2001a, 2002; Ng et al., 2002), and no prior work has been done on

the buckling and postbuckling characteristics of piezoelectric FGM hybrid plates.

Hence, this paper is devoted to modeling the buckling and postbuckling behavior of piezoelectric FGM
hybrid rectangular plates under the combined action of uniform temperature change, in-plane forces, and

constant applied control voltage in the framework of HSDT (Reddy, 1984) by using a semi-analytical one-

dimensional differential quadrature (DQ) approximation based iterative approach. Subset problems include

the bifurcational buckling of clamped plates due to thermal loads and/or edge compression, thermal

postbuckling, compressive postbuckling, and the thermo-mechanical postbuckling of plates with more

general boundary conditions. Extensive numerical results of dimensionless critical buckling load and

temperature parameters, and the postbuckling equilibrium paths, are presented in tabular and graphical

forms respectively.

2. Problem statement

The FGM hybrid rectangular plate under current consideration is defined in a Cartesian co-ordinate

system ðX ; Y ; ZÞ, where X 2 ½0; a�, Y 2 ½0; b� are co-ordinates of a point along the in-plane directions of the

plate and Z is the co-ordinate that is perpendicular to the mid-plane and points upwards. The plate is

comprised of an FGM substrate of thickness h and piezoelectric films of thickness ha that are perfectly

bonded on its top and bottom surfaces as actuators. The FGM layer is made of a combined ceramic-metal

material, the mixing ratio of which is varied continuously and smoothly in the Z direction so that its top

surface ðZ ¼ h=2Þ is pure ceramic, while its bottom surface ðZ ¼ �h=2Þ is pure metal. The material dis-
tribution is governed by
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VcðZÞ ¼
2Z þ h
2h

� �n

; VmðZÞ ¼ 1� 2Z þ h
2h

� �n

ð1Þ

where V ðZÞ is the volume fraction of a material constituent, n is a non-negative volume fraction exponent,

and subscripts c and m stand for ceramic and metal. The effective material properties Peff , such as Young�s
modulus E, Poisson�s ratio m, coefficient of thermal expansion a, can be determined as

Peff ¼ ðPc � PmÞ
2Z þ h
2h

� �n

þ Pm ð2Þ

Suppose that both the FGM and the piezoelectric material are linear elastic throughout the deformation,

and that the plate is initially stress free at T0 and is then subjected to a uniform temperature variation

DT ¼ T � T0, a constant electric field ðEX ;EY ;EZÞ, and uniform edge forces �ppX along X -axis and �ppY along
Y -axis. The present work aims to reveal the buckling and postbuckling behavior of the plate under the

combined action of these thermo-electro-mechanical loads.

3. Theoretical formulations

3.1. Governing equations

Let U , V , and W be the plate displacements parallel to the co-ordinates ðX ; Y ; ZÞ, let WX and WY be the

mid-plane rotations of transverse normals about the Y and X axes, and let U 0, V 0, W 0 represent the dis-

placements on the mid-plane ðZ ¼ 0Þ of the plate. According to Reddy�s HSDT (Reddy, 1984), the dis-

placement field of the plate is assumed to be

UðX ; Y ; ZÞ ¼ U 0ðX ; Y Þ þ ZWX ðX ; Y Þ � c1Z3ðWX þ W 0;X Þ ð3aÞ

V ðX ; Y ; ZÞ ¼ V 0ðX ; Y Þ þ ZWY ðX ; Y Þ � c1Z3ðWY þ W 0;Y Þ ð3bÞ

W ðX ; Y ; ZÞ ¼ W 0ðX ; Y Þ ð3cÞ

where c1 ¼ 4=3h2, and the commas denote partial differentiation with respect to the corresponding co-

ordinates. As geometric non-linearity due to moderately large deflection and small rotations is considered
in the analysis, the non-linear strains can be derived from the above displacement field and by using von

Karman�s assumptions as follows

eX
eY
cXY

8<:
9=; ¼

eð0ÞX
eð0ÞY
cð0ÞXY

8><>:
9>=>;þ Z

eð1ÞX

eð1ÞY

cð1ÞXY

8><>:
9>=>;þ Z3

eð3ÞX
eð3ÞY
cð3ÞXY

8><>:
9>=>; ð4Þ

cYZ
cZX


 �
¼ cð0ÞYZ

cð0ÞZX

( )
þ Z2 cð2ÞYZ

cð2ÞZX

( )
ð5Þ
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where

feð0Þg ¼
eð0ÞX

eð0ÞY

cð0ÞXY

8><>:
9>=>; ¼

U 0;X þ 1
2
ðW ;X Þ2

V 0;Y þ 1
2
ðW ;Y Þ2

U 0;Y þ V 0;X þ W ;XW ;Y

8><>:
9>=>;; feð1Þg ¼

eð1ÞX

eð1ÞY

cð1ÞXY

8><>:
9>=>; ¼

WX ;X

WY ;Y

WX ;Y þ WY ;X

8><>:
9>=>;

feð3Þg ¼
eð3ÞX

eð3ÞY

cð3ÞXY

8>><>>:
9>>=>>; ¼ �c1

WX ;X þ W ;XX

WY ;Y þ W ;YY

WX ;Y þ WY ;X þ 2W ;XY

8><>:
9>=>;; fcð0Þg ¼ cð0ÞYZ

cð0ÞZX

( )
¼ WY þ W ;Y

WX þ W ;X

( )

fcð2Þg ¼ cð2ÞYZ

cð2ÞZX

( )
¼ �3c1

WY þ W ;Y

WX þ W ;X

( )
ð6Þ

The linear stress–strain relationship for hybrid FGM plates, taking into account the piezoelectric and

thermal effects, is given by

rX
rY
sYZ
sZX
sXY

8>>>><>>>>:

9>>>>=>>>>; ¼

Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

266664
377775

eX
eY
cYZ
cZX
cXY

8>>>><>>>>:

9>>>>=>>>>;

0BBBB@ �

a
a
0

0

0

8>>>><>>>>:

9>>>>=>>>>;DT

1CCCCA�

0 0 e31
0 0 e32
0 0 0

0 e24 0

e15 0 0

266664
377775

EX
EY
EZ

8<:
9=; ð7Þ

where Qij ði; j ¼ 1; 2; 4; 5; 6Þ is the elastic stiffness of the FGM layer given by

Q11 ¼ Q22 ¼
E

1� m2
; Q12 ¼

mE
1� m2

; Q44 ¼ Q55 ¼ Q66 ¼
E

2ð1þ mÞ ð8Þ

Piezoelectric stiffness e31, e32, e15, e24 can be expressed in terms of the dielectric constants d31, d32, d15, d24 and
the elastic stiffness Qa

ij ði; j ¼ 1; 2; 4; 5; 6Þ of the piezoelectric actuator layers as

e31 ¼ ðd31Qa
11 þ d32Qa

12Þ; e32 ¼ ðd31Qa
12 þ d32Qa

22Þ; e24 ¼ d24Qa
44; e15 ¼ d15Qa

55 ð9Þ

As only transverse electric field component EZ is dominant in plate type piezoelectric material, it is as-

sumed that

EX EY EZ½ �T ¼ 0 0 Va=ha½ �T ð10Þ

where Va is the voltage that is applied to the actuators in the thickness direction.

The total stress resultants are defined by a semi-inverse relationship as

eð0Þ

M�M�

P� P�

8<:
9=; ¼

A� B� E�

�ðB�ÞT D� ðF�ÞT
�ðE�ÞT F� H�

24 35 N�N�

eð1Þ

eð3Þ

8<:
9=; ð11Þ

Q

R


 �
¼ A D

D F

� �
cð0Þ

cð2Þ


 �
ð12Þ

where N
�
, M

�
, P

�
are the sums of the in-plane forces, moments, and higher-order moments due to the

temperature change and electric field: that is,

N
� ¼ N

T þ N
E
; M

� ¼ M
T þM

E
; P

� ¼ P
T þ P

E ð13Þ

3872 K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 3869–3892



Among these, the thermal stress resultants are

N
T

X M
T

X P
T

X

N
T

Y M
T

Y P
T

Y

N
T

XY M
T

XY P
T

XY

264
375 ¼

Z h=2

�h=2
ð1; Z; Z3Þ

AX
AY
AXY

8<:
9=;DT dZ ¼

AT
X DT

X F T
X

AT
Y DT

Y F T
Y

AT
XY DT

XY F T
XY

24 35DT ð14Þ

and the electric stress resultants are

N
E

X M
E

X P
E

X

N
E

Y M
E

Y P
E

Y

N
E

XY M
E

XY P
E

XY

264
375 ¼

XNa

k¼1

Z Zkþ1

Zk

ð1; Z; Z3Þ
BX
BY
BXY

8<:
9=;EZ dZ ¼

AE
X DE

X F E
X

AE
Y DE

Y F E
Y

AE
XY DE

XY F E
XY

24 35EZ ð15Þ

where

AX
AY
AXY

8<:
9=; ¼ �

ðQ11 þ Q12Þa
ðQ11 þ Q12Þa

0

8<:
9=;;

BX
BY
BXY

8<:
9=; ¼ �

d31Qa
11 þ d32Qa

12

d31Qa
12 þ d32Qa

22

0

8<:
9=; ð16Þ

The reduced stiffness of the plate A�
ij, B

�
ij, D

�
ij, E

�
ij, F

�
ij , H

�
ij ði; j ¼ 1; 2; 6Þ are determined by

A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B; H� ¼ H� EA�1E

ð17Þ

in which only the stiffness elements that are associated with subscripts ‘‘16’’, ‘‘26’’, ‘‘61’’ and ‘‘62’’ are zero,

and

ðAij;Bij;Dij;Eij; Fij;HijÞ ¼
Z h=2

�h=2
Qijð1;Z;Z2; Z3; Z4;Z6ÞdZ þ

XNa

k¼1

Z Zkþ1

Zk

Qa
ijð1;Z; Z2; Z3;Z4;Z6ÞdZ ði; j ¼ 1; 2; 6Þ

ð18Þ

ðAij;Dij; FijÞ ¼
Z h=2

�h=2
Qijð1;Z2; Z4ÞdZ þ

XNa

k¼1

Z Zkþ1

Zk

Qa
ijð1; Z2; Z4ÞdZ ði; j ¼ 4; 5Þ ð19Þ

Here Na is the number of actuator layers.

Let F ðX ; Y Þ be the stress function that is related to stress resultants by NX ¼ F ;YY , NY ¼ F ;XX ,

NXY ¼ �F ;XY . We can derive the HSDT-based non-linear equilibrium equations of hybrid FGM plates as
follows:

QX ;X þ QY ;Y � 3c1ðRX ;X þ RY ;Y Þ þ c1ðPX ;XX þ 2PXY ;XY þ PY ;YY Þ ¼ eLLðW ; F Þ ð20Þ

MX ;X þMXY ;Y � QX þ 3c1RX � c1ðPX ;X þ PXY ;Y Þ ¼ 0 ð21Þ

MXY ;X þMY ;Y � QY þ 3c1RY � c1ðPXY ;X þ PY ;Y Þ ¼ 0 ð22Þ
The compatibility condition states that

eX ;YY þ eY ;XX � cXY ;XY ¼ ðW ;XY Þ2 � W ;XXW ;YY ð23Þ
where the non-linear partial differential operator eLLð Þ ¼ ð Þ;XX ð Þ;YY � 2ð Þ;XY ð Þ;XY þ ð Þ;YY ð Þ;XX .

3.2. Dimensionless governing equations

By putting Eqs. (11) and (12) into equilibrium equations (20)–(22), applying Eqs. (4) and (11) to com-

patibility equation (23), and introducing the following dimensionless quantities,
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x ¼ X=a; y ¼ Y =b; b ¼ a=b; D ¼ ðD�
11D

�
22A

�
11A

�
22Þ

1=4
; kT ¼ 1000acDT ; W ¼ W =D

F ¼ F =ðD�
11D

�
22Þ

1=2
; ðWx;WyÞ ¼ ðWX ;WY Þa=D; ðdx; dyÞ ¼ ð�ddX=a; �ddY =bÞb2=D2

ðkx; kyÞ ¼ ð�ppX b2; �ppY a2Þ=ðD�
11D

�
22Þ

1=2
; ðN �

x ;N
�
y ;N

�
xyÞ ¼ ðN �

X ;N
�
Y ;N

�
XY Þa2=ðD�

11D
�
22Þ

1=2

ðMx;My ;Mxy ;M�
x ;M

�
y ;M

�
xyÞ ¼ ðMX ;MY ;MXY ;M

�
X ;M

�
Y ;M

�
XY Þa2=D�

11D

ðPx; Py ; Pxy ; P �
x ; P

�
y ; P

�
xyÞ ¼ c1ðPX ; PY ; PXY ; P

�
X ; P

�
Y ; P

�
XY Þa2=D�

11D

ð24Þ

where �ddX , �ddY imply the in-plane displacements in the X -axis and the Y -axis, and the non-linear governing

Eqs. (20)–(23) can be transformed into dimensionless form as

L11ðW Þ � L12ðWxÞ � L13ðWyÞ þ c14L14ðF Þ � L15ðN �Þ � L16ðM�Þ ¼ c14b
2LðW ; F Þ ð25Þ

L21ðF Þ þ c24L22ðWxÞ þ c24L23ðWyÞ � c24L24ðW Þ � L25ðN �Þ ¼ �1
2
c24b

2LðW ;W Þ ð26Þ

L31ðW Þ þ L32ðWxÞ � L33ðWyÞ þ c14L34ðF Þ � L35ðN �Þ � L36ðS�Þ ¼ 0 ð27Þ

L41ðW Þ � L42ðWxÞ þ L43ðWyÞ þ c14L44ðF Þ � L45ðN �Þ � L46ðS�Þ ¼ 0 ð28Þ
where S� ¼ M� � c1P �, Lð Þ ¼ ð Þ;xxð Þ;yy � 2ð Þ;xyð Þ;xy þ ð Þ;yyð Þ;xx. The linear partial differential operators
are the same as those that are given by Yang and Shen (2002a), with the exception of those that are as-

sociated with thermal and piezoelectric effects, as follows

L15ðN �Þ ¼ ½c711N �
x þ c721N

�
y �;xx þ 2bc733N

�
xy;xy þ b2½c712N �

x þ c722N
�
y �;yy

L16ðM�Þ ¼ M�
x;xx þ 2bM�

xy;xy þ b2M�
y;yy

L25ðN �Þ ¼ ½c612N �
x þ N �

y �;xx � bc633N
�
xy;xy þ b2½c611N �

x þ c612N
�
y �;yy

L35ðN �Þ ¼ ½c511N �
x þ c512N

�
y �;x þ bc516N

�
xy;y ; L36ðS�Þ ¼ S�x;x þ bS�xy;y

L45ðN �Þ ¼ c516N
�
xy;x þ b½c517N �

x þ c518N
�
y �;y ; L46ðS�Þ ¼ S�xy;x þ bS�y;y

ð29Þ

Obviously, these terms will vanish when, in particular, the temperature field and the electric field are

uniform through the plate domain, or vary in the Z-direction only.

The non-dimensionalized moments and their higher-order counterparts are of the form

Mx ¼ �c14ðc711b2F;yy þ c721F;xxÞ þ cM10Wx;x þ cM12bWy;y � ðcM13W;xx þ cM14bW;yyÞ
þ ½c14ðc711cT1 þ c721cT2Þ þ cT4�kT þ ½c14ðc711cE1 þ c721cE2Þ þ cE4�EZ ð30aÞ

My ¼ �c14ðc712b2F;yy þ c722F;xxÞ þ cM20Wx;x þ cM22bWy;y � ðcM23W;xx þ cM24bW;yyÞ
þ ½c14ðc712cT1 þ c722cT2Þ þ cT5�kT þ ½c14ðc712cE1 þ c722cE2Þ þ cE5�EZ ð30bÞ

Mxy ¼ c14c733bF;xy þ cM31ðWy;x þ bWx;yÞ � 2cM35bW;xy ð30cÞ

Px ¼ �c14ðcP18b2F;yy þ cP16F;xxÞ þ cP10Wx;x þ cP12bWy;y � ðcP13W;xx þ cP14bW;yyÞ
þ ½c14ðcP18cT1 þ cP16cT2Þ þ cT7�kT þ ½c14ðcP18cE1 þ cP16cE2Þ þ cE7�EZ ð31aÞ

Py ¼ �c14ðcP28b2F;yy þ cP26F;xxÞ þ cP20Wx;x þ cP22bWy;y � ðcP23W;xx þ cP24bW;yyÞ
þ ½c14ðcP28cT1 þ cP26cT2Þ þ cT8�kT þ ½c14ðcP28cE1 þ cP26cE2Þ þ cE8�EZ ð31bÞ

Pxy ¼ c14cP37bF;xy þ cP31ðWy;x þ bWx;yÞ � 2cP35bW;xy ð31cÞ
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The out-of-plane boundary conditions for simply supported (S), clamped (C), and free (F) edges are

S: W ¼ Ws ¼ Mn ¼ Pn ¼ 0 ð32Þ

C: W ¼ Ws ¼ Wn ¼ W;n ¼ 0 ð33Þ

F: Q�
n ¼ M�

ns ¼ Mn ¼ Pn ¼ 0 ð34Þ

Depending upon the in-plane supporting characteristics, two types of in-plane constraints, one that is

termed ‘‘movable’’, where in-plane expansion/contraction may occur, and another that is termed ‘‘im-

movable’’, where no in-plane expansion/contraction is allowed, will also be considered. However, in both
cases, the tangential motion parallel to the edges is unconstrained. This requires that

F ;ns¼ 0; F;ss þ k�
n ¼ 0 ðfor movable edgesÞ ð35Þ

F ;ns¼ 0; dn ¼ 0 ðfor immovable edgesÞ ð36Þ

Subscripts n and s refer to the normal and tangential directions of the plate edge. M�
ns and Q�

n are the

dimensionless generalized moment and transverse shear force, which are given by

M�
xy ¼ cm11bW;xy þ c14cm21bF;xy þ cm31ðbWx;y þ Wy;xÞ ð37Þ

Q�
x ¼ �ðcQ10W;xxx þ cQ12b

2W;xyy � c31W;xÞ � c14ðcQ20F;xxx þ cQ22b
2F;xyyÞ þ c31Wx

þ cQ30Wx;xx þ cQ32b
2Wx;yy þ cQ34bWy;xy ð38Þ

In general, the immovable condition cannot be satisfied at every arbitrary point on the corresponding

edge, and is therefore fulfilled in a weak form as

dx ¼ �ðax þ aTx kT þ aEx EZÞ=c24b
2 ¼ 0 at x ¼ 0; 1 ð39aÞ

dy ¼ �ðby þ bTy kT þ bEy EZÞ=c24b
2 ¼ 0 at y ¼ 0; 1 ð39bÞ

where

ax ¼
Z 1

0

Z 1

0

½c224b
2F;yy



� c5F;xx þ c24ðc511Wx;x þ c233bWy;yÞ � c24ðcp18W;xx þ cp28b

2W;yyÞ� �
1

2
c24ðW;xÞ2

�
dxdy

by ¼
Z 1

0

Z 1

0

½F;xx



� c5b
2F;yy þ c24ðc512Wx;x þ c518bWy;yÞ � c24ðcp16W;xx þ cp26b

2W;yyÞ� �
1

2
c24b

2ðW;yÞ2
�
dy dx

aTx ¼ �
Z 1

0

Z 1

0

ðc224cT1 � c5cT2Þdxdy; bTy ¼ �
Z 1

0

Z 1

0

ðcT2 � c5cT1Þdxdy

aEx ¼ �
Z 1

0

Z 1

0

ðc224cE1 � c5cE2Þdxdy; bEy ¼ �
Z 1

0

Z 1

0

ðcE2 � c5cE1Þdxdy

ð40Þ

To include the uniform membrane stress state in the plate, the stress function is expressed as

F ¼ �1
2
ðy2k�

x þ x2k�
yÞ þ f ðx; yÞ ð41Þ

where k�
x and k�

y are combinations of the applied in-plane forces ðkx; kyÞ and the reactions of immovable

constraints, and can be determined according to different in-plane boundary conditions by:
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(a) when the plate is immovable at four edges

k�
x ¼ ½s12by � s22ax þ ðs12bTy � s22aTx ÞkT þ ðs12bEy � s22aEx ÞEz�=ðs212 � s11s22Þ ð42aÞ

k�
y ¼ ½s12ax � s11by þ ðs12aTx � s11bTy ÞkT þ ðs12aEx � s11bEy ÞEz�=ðs212 � s11s22Þ ð42bÞ

(b) when the plate is movable at x ¼ 0; 1 and immovable at y ¼ 0; 1

k�
x ¼ kx; k�

y ¼ ½by þ bTy kT þ bEy Ez � s12kx�=s22 ð43a;bÞ

(c) when the plate is immovable at x ¼ 0; 1 and movable at y ¼ 0; 1

k�
x ¼ ½ax þ aTx kT þ aEx Ez � s12ky �=s11; k�

y ¼ ky ð44a;bÞ

(d) when the plate is movable at all edges

k�
x ¼ kx; k�

y ¼ ky ð45a;bÞ

where s11 ¼ c224=c14, s12 ¼ c612=c14, s22 ¼ 1=c14.

Dimensionless quantities of cij and cijk are listed in Appendix A.

4. Semi-analytical formulations

A semi-analytical DQ-based iteration process is employed to determine the postbuckling response of the
plate. The basic idea is to convert the non-linear partial differential governing Eqs. (25)–(28) and the

associated boundary conditions into a set of ordinary differential equations through the DQ approximation

in x-axis, and then apply the Galerkin procedure to establish a non-linear algebraic equation system, from

which the postbuckling path can be determined by an iterative scheme.

4.1. Solution methodology

As shown in Fig. 1, the plate domain is in the first place discretized along the x-axis by a number of nodal
lines parallel to the y-axis, among which x2 ¼ 0:0001 and xN�1 ¼ 0:9999 are arranged to be quite close to

x1 ¼ 0 and xN ¼ 1 to impose the six boundary conditions at each of the two edges ðx ¼ 0; 1Þ. The other

nodal lines are located according to the cosine spacing pattern as

xi ¼
1

2
1

�
� cos

pði� 2Þ
N � 3

�
ð46Þ

where N is the total number of nodal lines. Designating the unknown function values at an arbitrary

sampling nodal line x ¼ xi as

Wi ¼ W ðxi; yÞ; fi ¼ f ðxi; yÞ; Wxi ¼ Wxðxi; yÞ; Wyi ¼ Wyðxi; yÞ i ¼ 1; . . . ;N ð47Þ
and applying the DQ rule to the dimensionless partial differential governing equations (25)–(28), yields

Li11ðW Þ � Li12ðWxÞ � Li13ðWyÞ þ c14L
i
14ðf Þ ¼ c14b

2LiðW ; f Þ ð48Þ

Li21ðf Þ þ c24L
i
22ðWxÞ þ c24L

i
23ðWyÞ � c24L

i
24ðW Þ ¼ �1

2
c24b

2LiðW ;W Þ ð49Þ

Li31ðW Þ þ Li32ðWxÞ � Li33ðWyÞ þ c14L
i
34ðf Þ ¼ 0 ð50Þ

Li41ðW Þ � Li42ðWxÞ þ Li43ðWyÞ þ c14L
i
44ðf Þ ¼ 0 ð51Þ
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where the discretized differential operators are

Li11ðW Þ ¼ c110
XN
j¼1

Cð4Þ
ij Wj þ 2c112b

2
XN
j¼1

Cð2Þ
ij Wj;yy þ c114b

4Wi;yyyy þ c14b
2 k�

x

XN
j¼1

Cð2Þ
ij Wj

 
þ k�

yWi;yy

!

Li12ðWxÞ ¼ c120
XN
j¼1

Cð3Þ
ij Wxj

 
þ c122b

2
XN
j¼1

Cð1Þ
ij Wxj;yy

!

Li13ðWyÞ ¼ b c131
XN
j¼1

Cð2Þ
ij Wyj;y

 
þ c133b

2Wyi;yyy

!

Li14ðf Þ ¼ c140
XN
j¼1

Cð4Þ
ij fj

 
þ c142b

2
XN
j¼1

Cð2Þ
ij fj;yy þ c144b

4fi;yyyy

!

LiðW ; f Þ ¼ fi;yy
XN
j¼1

Cð2Þ
ij Wj

 
� 2

XN
j¼1

Cð1Þ
ij Wj;y

XN
k¼1

Cð1Þ
ik fk;y þ Wi;yy

XN
j¼1

Cð2Þ
ij fj

!

Li21ðf Þ ¼
XN
j¼1

Cð4Þ
ij fj þ c212b

2
XN
j¼1

Cð2Þ
ij fj;yy þ c224b

4fi;yyyy

Li22ðWxÞ ¼ c220
XN
j¼1

Cð3Þ
ij Wxj

 
þ c222b

2
XN
j¼1

Cð1Þ
ij Wxj;yy

!

Li23ðWyÞ ¼ c231
XN
j¼1

Cð2Þ
ij Wyj;y

 
þ c233b

2Wyi;yyy

!

Li24ðW Þ ¼ c240
XN
j¼1

Cð4Þ
ij Wj

 
þ c242b

2
XN
j¼1

Cð2Þ
ij Wj;yy þ c244b

4Wi;yyyy

!

y

x
2 N1 i

Fig. 1. Nodal line system in a rectangular plate domain.
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LiðW ;W Þ ¼ Wi;yy

XN
j¼1

Cð2Þ
ij Wj

 
� 2

XN
j¼1

Cð1Þ
ij Wj;y

XN
k¼1

Cð1Þ
ik Wk;y þ Wi;yy

XN
j¼1

Cð2Þ
ij Wj

!

Li31ðW Þ ¼ c31
XN
j¼1

Cð1Þ
ij Wj þ c310

XN
j¼1

Cð3Þ
ij Wj þ c312b

2
XN
j¼1

Cð1Þ
ij Wj;yy

Li32ðWxÞ ¼ c31Wxi

 
� c320

XN
j¼1

Cð2Þ
ij Wxj � c322b

2Wxi;yy

!
; Li33ðWyÞ ¼ c331b

XN
j¼1

Cð1Þ
ij Wyj;y

Li34ðf Þ ¼ c220
XN
j¼1

Cð3Þ
ij fj

 
þ c222b

2
XN
j¼1

Cð1Þ
ij fj;yy

!

Li41ðW Þ ¼ c41bWi;y þ c411b
XN
j¼1

Cð2Þ
ij Wj;y þ c413b

3Wj;yyy ; Li42ðWxÞ ¼ c331b
XN
j¼1

Cð1Þ
ij Wxj

Li43ðWyÞ ¼ c41Wyi

 
� c430

XN
j¼1

Cð2Þ
ij Wyj � c432b

2Wyi;yy

!
;

Li44ðf Þ ¼ b c231
XN
j¼1

Cð2Þ
ij fj;y

 
þ c233b

2fi;yyy

!
i ¼ 2; 3;N � 2;N � 1 ð52Þ

Here, CðkÞ
ij is the weighting coefficient for the kth partial derivative of a unknown function with respect to x,

and can be determined from the recursive formulae that are given by, for example, Bert and Malik (1996)

and Liew et al. (1996). After incorporating the associated boundary conditions that are being discretized in
the same way, we obtain a system of 4N ordinary differential equations in terms of Wi , fi, Wxi, and Wyi.

At each nodal line, Wi , fi, Wxi, and Wyi are expanded in series form as

Wi

fi
Wxi

Wyi

8>><>>:
9>>=>>; ¼

XM
m¼1

aim 0 0 0

0 bim 0 0

0 0 cim 0

0 0 0 dim

2664
3775

WimðyÞ
fimðyÞ

WximðyÞ
WyimðyÞ

8>><>>:
9>>=>>; ð53Þ

where M is the truncated number of the series expansions, and aim, bim, cim, dim are constants to be deter-
mined.

Solutions are sought for plates that are clamped at y ¼ 0; 1, and free, simply supported, or clamped at

x ¼ 0; 1. To this end, WimðyÞ, fimðyÞ, WximðyÞ, and WyimðyÞ are chosen to satisfy the clamped boundary

conditions and take the form of

WimðyÞ ¼ sin amy � sinh amy � nmðcos amy � cosh amyÞ ð54aÞ

fimðyÞ ¼ sin amy � sinh amy � nmðcos amy � cosh amyÞ ð54bÞ

WximðyÞ ¼ sinðmpyÞ; WyimðyÞ ¼ sinðmpyÞ ð54c;dÞ

where nm ¼ ðsin am � sinh amÞ=ðcos am � cosh amÞ, am ¼ ð2mþ 1Þp=2.
Putting Eqs. (53) and (54) into the 4N ordinary differential equations, and then applying the Galerkin

procedure, gives a non-linear algebraic system that governs the postbuckling behavior of the plate under

thermo-electro-mechanical loads as

ð½K0� þ k½Kk� þ kT ½KT � þ ½KNLðUÞ�Þ4NM�4NMfUg4NM�1 ¼ fRg4NM�1 ð55Þ
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where fUg implies an unknown vector that is composed of aim, bim, cim, dim (i ¼ 1; . . . ;N ; m ¼ 1; . . . ;M), fRg
stands for the thermo-electro-mechanical load vector, ½K0� is the constant coefficient matrix, ½Kk� and ½KT �
are coefficient matrices that are associated with applied in-plane force parameter k (kx ¼ sxk, ky ¼ syk) and
temperature parameter kT , ½KNL� is a non-linear matrix that is dependent on fUg, and sx and sy are the
proportion ratios for applied in-plane forces.

It should be pointed out that the above solution procedure is also valid for isotropic plates that are

simply supported at y ¼ 0; 1, but the functions WimðyÞ, fimðyÞ, WximðyÞ, and WyimðyÞ should be replaced by

WimðyÞ ¼ sinðmpyÞ ð56aÞ

fimðyÞ ¼ sin amy � sinh amy � nmðcos amy � cosh amyÞ ð56bÞ

WximðyÞ ¼ sinðmpyÞ; WyimðyÞ ¼ cosðmpyÞ ð56c;dÞ

4.2. Subset problems

4.2.1. Bifurcation buckling of piezoelectric FGM hybrid plates

Due to the presence of bending–stretching coupling elements in reduced stiffness matrices (17), even

minimal in-plane action can give rise to deflections and bending moments in piezoelectric FGM hybrid

plates. Therefore, bifurcation-type buckling will not occur, except when the plate is fully clamped. This is

because the bending moments that are generated by thermo-electric-mechanical loads can be neutralized by

the support reacting moments that are produced by the four clamped edges, and the plate can remain flat

before buckling (Leissa, 1986; Qatu and Leissa, 1993). As another special case, isotropic plates, which are
free from the bending–stretching coupling effect, are also capable of bifurcation-type buckling.

For clamped piezoelectric FGM hybrid plates, the critical buckling load parameter can be found by

solving the following eigenvalue equation

ð½K0� þ kcr½Kk�Þ4NM�4NMfUg4NM�1 ¼ f0g4NM�1 ð57Þ

and the critical buckling temperature parameter can be determined from

ð½K0� þ kT cr½KT �Þ4NM�4NMfUg4NM�1 ¼ f0g4NM�1 ð58Þ

The buckling load for a thermally prestressed clamped plate is given by

ð½K0� þ kT ½KT � þ kcr½Kk�Þ4NM�4NMfUg4NM�1 ¼ f0g4NM�1 ð59Þ

and the buckling temperature for an initially stressed clamped plate is defined by

ð½K0� þ k½Kk� þ kT cr½KT �Þ4NM�4NMfUg4NM�1 ¼ f0g4NM�1 ð60Þ

The lowest eignvalues kcr, kT cr denote the critical buckling load parameter and the critical buckling

temperature parameter. Note that kT < k0
T cr in Eq. (59) and k < k0

cr in Eq. (60) where k0
cr is solved from

Eq. (57) and k0
T cr is solved from Eq. (58).

4.2.2. Postbuckling response of piezoelectric FGM hybrid plates

After buckling, the postbuckling equilibrium path of the plate can be traced by solving the non-linear

equilibrium equation (55) with an iterative scheme. In this paper, compressive postbuckling ðkT ¼ 0Þ,
thermal postbuckling ðk ¼ 0Þ, and thermo-mechanical postbuckling (either kT or k is given) are included as

subset problems.

For isotropic or clamped piezoelectric FGM hybrid plates that exhibit bifurcation instability, the right-
hand side vector in Eq. (55) becomes zero, as no bending curvatures take place and/or, the bending
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moments and membrane forces that are induced by thermo-electro-mechanical loading will not be involved

in the clamped boundary conditions, and therefore do not appear in Eq. (55), which in these cases becomes

ð½K0� þ k½Kk� þ kT ½KT � þ ½KNLðUÞ�Þ4NM�4NMfUg4NM�1 ¼ f0g4NM�1 ð61Þ

This equation is solved by an iterative scheme with the following steps:

(a) Begin by solving an eigenvalue problem without considering geometric non-linearity in Eq. (61) to ob-

tain the linear eigenvalue and corresponding eigenvector as the initial guesses of the buckling parameter

and buckling mode.

(b) For a given maximum dimensionless central deflection, scale up the buckling mode and calculate the
non-linear matrix ½KNLðUÞ� to form a new eigenvalue system (61).

(c) Solve the new eigenvalue Eq. (61) to produce a new eigenvalue and eigenvector;

Repeat steps (b) and (c) until the relative difference between the eigenvalues (buckling load or buckling

temperature) that is obtained from the subsequent two iterations is within the specified tolerance. Here,

the error tolerance is g < 10�3.

(d) Repeat step (b)–(d) to determine the postbuckling equilibrium path.

For piezoelectric FGM hybrid plates in which bending curvatures, non-uniform membrane stresses, and

bending moments develop when subjected to thermo-electro-mechanical loads, the right-hand side force
vector in Eq. (55) is non-zero, and eigenvalue type instability will not occur. In such a case, the modified

Newton–Raphson technique will be used to obtain the equilibrium paths.

5. Results and discussion

In what follows, a symbolic notation is used to indicate the out-of-plane edge supporting condition,

‘‘CSCF’’: for example, when it refers to a plate that is clamped at y ¼ 0; 1, simply supported at x ¼ 0, and

free at x ¼ 1.

5.1. Convergence and comparison studies

Convergence studies are undertaken in Tables 1 and 2 by comparing the results with varying numbers of

nodal lines N and truncated series number M . The present method converges well enough to yield results

Table 1

Buckling load parameter kcr ¼ �ppX b2h=p2D for clamped isotropic rectangular plates that are subjected to in-plane loads

b=h Source Uniaxial compression Biaxial compression

a=b ¼ 0:5 a=b ¼ 1:0 a=b ¼ 0:5 a=b ¼ 1:0

20 N �M ¼ 9� 3 9.8141 3.4245 9.4506 3.2744

N �M ¼ 13� 5 17.1668 9.6251 13.3755 5.0791

N �M ¼ 17� 5 17.1636 9.3884 13.3685 5.0787

N �M ¼ 21� 7 17.1636 9.3867 13.3683 5.0786

Liew et al. (2001b) 16.918 9.5227 13.766 5.0673

Wang et al. (1993) 17.199 9.5526 13.963 5.0840

10 N �M ¼ 9� 3 8.2996 3.0811 7.9595 2.9973

N �M ¼ 13� 5 13.2316 8.0408 10.4606 4.5736

N �M ¼ 17� 5 13.2287 8.3329 10.4606 4.5734

N �M ¼ 21� 7 13.2288 8.3314 10.4607 4.5734

Liew et al. (2001b) 12.462 8.1226 10.173 4.4535

Wang et al. (1993) 12.974 8.2733 10.541 4.5400
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with sufficient accuracy when N �M ¼ 17� 5 for clamped isotropic plates under uniaxial compression in
Table 1, when N �M ¼ 13� 5 for plates that are exposed to uniform temperature change in Table 2, and

for clamped isotropic plates under biaxial compression in Table 1. Hereafter, N �M ¼ 17� 5 is used in all

numerical computations.

Before proceeding to the buckling and postbuckling analysis of piezoelectric FGM hybrid plates, four

illustrative examples are solved to validate the accuracy and effectiveness of the present formulation. Direct

comparisons are made between our results and those from the literature.

In Table 1, the buckling load parameter, kcr ¼ �ppX b2h=p2D�
11, for clamped isotropic rectangular plates

ðm ¼ 0:3Þ that are subjected to uniaxial and biaxial edge compression is compared to the FSDT results of
Wang et al. (1993) and the 3-D solutions of Liew et al. (2001b). Good agreement is noticed.

Table 2 gives the critical temperature parameter kT cr for isotropic square plates ðm ¼ 0:3Þ that are sub-

jected to uniform temperature change. The computation data are b=h ¼ 100, 10, 5, a ¼ 1:0� 10�6 for the

simply supported plate, and b=h ¼ 100, a ¼ 2:0� 10�6 for the clamped plate. The results by Gossard et al.

(1952), the 3-D elasticity solution of Noor and Burton (1992), the FSDT solution of Singha et al. (2001),

and the HSDT solution of Shen (1998) are provided for comparison. Clearly, the present results agree well

with these previous results.

Fig. 2 displays the postbuckling load-deflection curves for a simply supported, isotropic, moderately
thick plate (b=h ¼ 10, m ¼ 0:3) under equal biaxial edge compression. Direct comparison shows excellent

correlation between the results of the present analysis and those of Bhimaraddi (1992).

The thermal postbuckling equilibrium path for a simply supported, isotropic square plate ðm ¼ 0:15Þ
under uniform temperature change is depicted in Fig. 3. The longitudinal edges of the plate are restrained:

that is, the plate is immovable at x ¼ 0; 1. The present curve is almost identical to that which was obtained

by Librescu and Souza (1993).

5.2. Buckling of clamped FGM plates

FGM with a mixture of zirconia and aluminum for the FGM substrate and G-1195N for the piezoelectric

layers is used for the plate, which is referred to as ZrO2/Al. The actuator layer thickness is ha ¼ 0:001 m.

The material properties for zirconia, aluminum, and G-1195N are listed in Table 3.

The buckling temperature parameter kT cr ¼ acDT � 103 for fully immovable, clamped piezoelectric FGM

hybrid rectangular plates (a=b ¼ 1:0, 1.5; a=h ¼ 80, 40, 20) that are subjected to uniform temperature

change and constant electric field is calculated and presented in Table 4. Five electric loading cases are
considered: Va ¼ 0, 
200, 
500 V. Here Va ¼ 0 V denotes a grounding condition. The results show that the

Table 2

Buckling temperature parameter kT cr for isotropic square plates that are subjected to uniform temperature change

Plate type Present results Existing results

N �M ¼ 9� 3 N �M ¼ 13� 5 N �M ¼ 17� 5 N �M ¼ 21� 7

Clamped

b=h ¼ 100 0.2532 0.3333 0.3334 0.3334 0.3374a 0.3357b

Simply supported

b=h ¼ 100 0.1265 0.1265 0.1265 0.1265 0.1264c 0.1265d

b=h ¼ 10 12.0018 12.0016 12.0016 12.0016 11.8300c 11.9778d

b=h ¼ 5 41.6120 41.6114 41.6113 41.6113 39.90c 41.2971d

aResults given by Gossard et al. (1952).
b FSDT results given by Singha et al. (2001).
cHSDT results given by Shen (1998).
d Three-dimensional results given by Noor and Burton (1992).
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critical buckling temperature decreases with the increase of the volume fraction index n (i.e., as the amount
of zirconia reduces), and increases as the plate aspect ratio a=b becomes larger. Moreover, the buckling

temperature can be increased by applying negative voltage on the actuator layers, because it makes the plate

0.00 0.25 0.50 0.75 1.00
0.00

0.15

0.30

0.45

0.60

0.75

Wc /h

λ cr

SSSS, movable
ν = 0.3, β = 1.0,    b/h = 10

: Present
: Bhimaraddi (1992)

Fig. 2. Comparison of postbuckling load-deflection curves for a movable, simply supported, isotropic square plate under biaxial edge

compression.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

Wc /h

ν = 0.15, β = 1.0, b/h = 100
SSSS, immovable at x = 0, 1

T
/T

cr

: Present
: Librescu & Souza (1993)

Fig. 3. Comparison of postbuckling load-deflection curves for a simply supported, isotropic square plate under uniform temperature

change.

Table 3

Material properties of FGMs and piezoelectric materials

Properties Zirconia Aluminum G-1195N

Elastic modulus E (GPa) 151.0 70.0 63.0

Poisson�s ratio m 0.3 0.3 0.3

Coefficient of thermal expansion a (1/�C) 10�5 2.3� 10�5 1.2� 10�4

Thermal conductivity j (W/mk) 2.09 204 5.0

Piezoelectric constant d31 (m/V) – – 2.54� 10�10

Piezoelectric constant d32 (m/V) – – 2.54� 10�10

3882 K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 3869–3892



contract. In contrast, positive voltage makes the plate stretch, and accordingly decreases the buckling
temperature.

Table 5 compares the buckling load parameter kcr ¼ �ppXb2=ðp2D0Þ for clamped piezoelectric FGM hybrid

rectangular plates (a=b ¼ 1:0, 2.0, 4.0; a=h ¼ 100, 40, 20, 10) that are movable at all edges and subjected to

uniaxial and biaxial edge compression. D0 is chosen to be the value of D�
11 of an isotropic zirconia plate with

a=h ¼ 10. The buckling load is dramatically reduced as a=b changes from 1.0 to 4.0. It is noteworthy that

for a fully movable plate, the constant actuator voltage has no effect on the critical buckling load because

the electrically induced deformation can develop freely in the in-plane direction of the plate.

The buckling problem of initially stressed clamped piezoelectric FGM hybrid plates under combined
loads is also studied. Critical buckling load parameter kcr is given in Table 6 for thermally prestressed

square plates that are movable at x ¼ 0; 1 and subjected to uniaxial compression in the x-axis while under

constant actuator voltage Va ¼ 
200 V. The plates are assumed to be initially loaded by various uniform

temperature change: l ¼ 0:0, 0.2, 0.4, 0.6, where l ¼ DT=DT 0
cr is the thermal load factor and DT 0

cr refers to

the critical value of the temperature change for the plates without mechanical and electric loads. As ex-

pected, the buckling load decreases as the temperature increases.

In Tables 4 and 6, the effect of actuator voltage becomes more obvious as the side-to-thickness ratio a=h
increases, and appears to be rather slight in the case of a=h ¼ 10. This indicates that applied voltage in the
piezoelectric actuator layers will play a more important role in controlling the bifurcation buckling in

thinner FGM plates.

5.3. Thermo-electro-mechanical postbuckling of FGM plates

This section describes the postbuckling analysis of piezoelectric FGM hybrid plates under thermo-
electro-mechanical loads. The results are given in dimensionless form in Figs. 4–9, in terms of the

Table 4

Buckling temperature rise (�C) for fully immovable, clamped piezoelectric FGM hybrid rectangular plates that are subjected to

uniform temperature change and a constant electric field

Actuator

voltage

Va (V)

a=b ¼ 1:0 a=b ¼ 1:5

ZrO2 n ¼ 0:2 n ¼ 2:0 n ¼ 5:0 Al ZrO2 n ¼ 0:2 n ¼ 2:0 n ¼ 5:0 Al

a=h ¼ 80

500 22.744 15.258 9.5772 8.7394 4.5573 51.153 37.226 26.785 25.646 18.686

200 29.102 21.137 15.171 14.515 10.521 55.392 41.145 30.514 29.497 22.662

0 33.341 25.056 18.899 18.365 14.496 58.218 43.758 33.000 32.063 25.312

)200 37.580 28.976 22.628 22.216 18.472 61.044 46.371 35.486 34.630 27.963

)500 43.939 34.855 28.222 27.991 24.435 65.283 50.290 39.215 38.481 31.938

a=h ¼ 40

500 190.78 140.73 103.15 99.281 74.949 351.64 263.41 197.07 190.78 149.33

200 200.31 149.55 111.54 107.94 83.894 355.88 267.33 200.80 194.63 153.31

0 206.70 155.43 117.14 113.72 89.857 358.71 269.94 203.29 197.20 155.96

)200 213.03 161.31 122.73 119.50 95.821 361.53 272.56 205.78 199.77 158.61

)500 222.57 170.13 131.12 128.16 104.77 365.77 276.47 209.50 203.62 162.59

a=h ¼ 20

500 787.42 590.93 441.15 426.02 334.36 1359.1 1025.8 767.57 740.25 587.37

200 796.96 599.75 449.54 434.68 343.30 1363.4 1029.7 771.30 744.10 591.34

0 803.32 605.63 455.13 440.50 349.27 1366.2 1032.3 773.79 746.68 593.99

)200 809.67 611.51 460.72 446.23 355.23 1369.0 1034.9 776.27 749.24 596.64

)500 819.21 620.33 469.11 454.98 364.18 1373.3 1038.8 780.00 753.09 600.62
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dimensionless load parameter kx ¼ �ppX b2=ð4p2D0Þ or the temperature parameter kT ¼ acDT � 103 against the
dimensionless central deflection W c=h.

Fig. 4 shows the compressive postbuckling response of fully movable, clamped piezoelectric FGM hybrid

square plates ða=h ¼ 10Þ under equal biaxial edge compression. As expected, the postbuckling load-

carrying capacity is the maximum for the isotropic zirconia plate, the minimum for the isotropic aluminum

plate, and decreases as the volume fraction index n increases due to the degradation in the plate stiffness.

This trend can also be observed in the other examples. Clamped piezoelectric FGM hybrid plates do exhibit

bifurcation-type instability, and the bifurcation point is represented by the intersection of the postbuckling

curve with the load ordinate, and corresponds to the critical buckling load. In these cases, the prebuckling
path overlaps the load ordinate. Note that the postbuckling curve for the plate with n ¼ 0:2 suddenly goes

down when W c=h > 0:9.
Fig. 5 gives the postbuckling response for movable CSCS and CSCF piezoelectric FGM hybrid square

plates under the same loading condition. Compared with CSCS plates, the CSCF plates are capable of

carrying higher loads in the postbuckling phase. The results also confirm that when the plate is neither

isotropic nor fully clamped, bifurcation-type instability cannot take place. Irrespective of the magnitude of

in-plane forces or temperature change, the existence of bending–stretching couplings in these graded plates

not only gives rise to bending moments and in-plane stresses, but also produces lateral deflections, as was
discussed in Section 4.2.1.

Moreover, the postbuckling curve for CSCS plates with n ¼ 0:2 suddenly drops at about W c=h > 0:44
and then steadily increases, which indicates the possibility of the occurrence of secondary instability: that is,

Table 5

Buckling load parameter kcr for movable, clamped piezoelectric FGM hybrid rectangular plates that are subjected to uniform edge

compression

Material

composition

Uniaxial compression Biaxial compression

a=b ¼ 1:0 a=b ¼ 2:0 a=b ¼ 4:0 a=b ¼ 1:0 a=b ¼ 2:0 a=b ¼ 4:0

a=h ¼ 100

ZrO2 9.7809 6.5255 3.3300 5.2700 3.8918 2.7899

n ¼ 0:2 7.9366 5.1951 2.6662 4.2634 3.1647 2.2373

n ¼ 2:0 6.3089 4.3974 2.2179 3.3958 2.5074 1.8488

n ¼ 5:0 5.9428 4.0738 2.0608 3.1958 2.3587 1.7223

Aluminum 4.5342 3.0251 1.5437 2.4430 1.8041 1.2933

a=h ¼ 40

ZrO2 9.6938 5.6245 2.7629 5.2267 3.8001 2.3661

n ¼ 0:2 7.8723 4.4824 2.2241 4.2514 3.0965 1.9088

n ¼ 2:0 6.2517 3.7926 1.8414 3.3676 2.4476 1.5691

n ¼ 5:0 5.8829 3.5047 1.6972 3.1662 2.2964 1.4487

Aluminum 4.4938 2.6074 1.2808 2.4230 1.7617 1.0969

a=h ¼ 20

ZrO2 9.3922 4.6125 2.0500 5.0789 3.5072 1.7627

n ¼ 0:2 7.6484 3.7346 1.6790 4.1413 2.8762 1.4480

n ¼ 2:0 6.0544 3.0833 1.3594 3.2711 2.2568 1.1635

n ¼ 5:0 5.6770 2.8074 1.2291 3.0658 2.0998 1.0522

Aluminum 4.3540 2.1383 0.9504 2.3545 1.6258 0.8171

a=h ¼ 10

ZrO2 8.3229 2.8570 1.1441 4.5734 2.7013 0.9640

n ¼ 0:2 6.8602 2.3795 0.9595 3.7599 2.2573 0.8116

n ¼ 2:0 5.3683 1.8829 0.7514 2.9421 1.7304 0.6309

n ¼ 5:0 4.9717 1.6758 0.6655 2.7287 1.5761 0.5578

Aluminum 3.8673 1.3245 0.5304 2.1201 1.2522 0.4469
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a snap-through phenomenon may take place. Generally, the transition from the primary postbuckling path
to the secondary postbuckling path is associated with the change of the postbuckling displacement mode

shape.

Fig. 6 investigates the thermally induced postbuckling behavior of fully immovable, clamped piezo-

electric FGM hybrid square plates with side-to-thickness a=h ¼ 20 under uniform temperature change. The

effect of the actuator voltage is also examined. The solid lines and the dashed lines represent the post-

buckling response for the cases of Va ¼ �200 and 200 V respectively. As revealed in our buckling analysis,

the application of negative voltage does improve the postbuckling strength to some extent, though not

significantly. It is interesting to see that in the large deflection stage, the graded plate with n ¼ 5:0 gains
postbuckling strength marginally, while other plates can develop greater load-carrying capacity.

Thermo-electro-mechanical postbuckling analysis is performed in Figs. 7–9 for clamped piezoelectric

FGM hybrid square plates that are immovable at y ¼ 0; 1 but movable at x ¼ 0; 1. Parametric studies are

undertaken to highlight the influence of in-plane prestress, prescribed temperature change, and the side-to-

thickness ratio on the postbuckling characteristics. The postbuckling paths under the combined action of

temperature change, applied voltage, and mechanical loads are somewhat different from those which are

obtained in mechanically or thermally induced postbuckling problems.

In Fig. 7, we assume that the plate ða=h ¼ 10Þ is subjected to edge compression on the x-axis and is
undergoing a uniform temperature change DT (¼ 100, 300 �C). The applied actuator voltage is fixed at

Va ¼ �200 V. All graded plates in this example will experience secondary instability. It is also evident from

the figure that, in general, the higher the temperature, the lower is the postbuckling strength. However, this

does not hold for piezoelectric FGM hybrid plates with n ¼ 0:2 and 2. In these two cases, postbuckling

paths at DT ¼ 300 �C surpass those at DT ¼ 100 �C when W c=h > 0:4.

Table 6

Buckling load parameter kcr for thermally prestressed, clamped piezoelectric FGM hybrid square plates that are movable at x ¼ 0; 1

and subjected to uniaxial compression and a constant electric field

Tempera-

ture rise,

l

Va ¼ �200 V Va ¼ 200 V

ZrO2 n ¼ 0:2 n ¼ 2:0 n ¼ 5:0 Al ZrO2 n ¼ 0:2 n ¼ 2:0 n ¼ 5:0 Al

a=h ¼ 100

0.0 5.6127 4.6247 3.7383 3.5387 2.7840 4.9238 3.9380 3.0481 2.8473 2.0946

0.2 4.6778 3.8897 3.0990 2.9214 2.3183 4.1107 3.3245 2.5306 2.3522 1.7505

0.4 3.7110 3.1299 2.4383 2.2837 1.8373 3.2661 2.6839 1.9935 1.8393 1.3916

0.6 2.6847 2.3142 1.7419 1.6140 1.3292 2.3585 1.9714 1.4210 1.2968 1.0023

a=h ¼ 40

0.0 5.2818 4.3063 3.4228 3.2215 2.4780 5.1715 4.1963 3.3122 3.1108 2.3677

0.2 4.4018 3.6245 2.8373 2.6588 2.0649 4.3109 3.5340 2.7462 2.5676 1.9740

0.4 3.4898 2.9171 2.2312 2.0766 1.6369 3.4185 2.8456 2.1599 2.0054 1.5655

0.6 2.5175 2.1487 1.5897 1.4637 1.1810 2.4653 2.0940 1.5384 1.4129 1.1288

a=h ¼ 20

0.0 5.0928 4.1551 3.2850 3.0979 2.3683 5.0651 4.1275 3.2572 3.0519 2.3406

0.2 4.2340 3.4885 2.7176 2.5373 1.9689 4.2111 3.4658 2.6947 2.5144 1.9460

0.4 3.3419 2.7948 2.1288 1.9749 1.5540 3.3239 2.7768 2.1109 1.9570 1.5361

0.6 2.3913 2.0422 1.5058 1.3829 1.1120 2.3782 2.0286 1.4929 1.3701 1.0990

a=h ¼ 10

0.0 4.5770 3.7634 2.9456 2.7322 2.1237 4.5700 3.7564 2.9386 2.7252 2.1167

0.2 3.7766 3.1295 2.4230 2.2421 1.7523 3.7708 3.1237 2.4172 2.2362 1.7465

0.4 2.9407 2.4660 1.8781 1.7312 1.3645 2.9362 2.4614 1.8735 1.7266 1.3599

0.6 2.0549 1.7545 1.3032 1.1941 0.9535 2.0516 1.7512 1.2999 1.1909 0.9502
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Fig. 4. Postbuckling response of movable, clamped hybrid square plates under equal biaxial compression.
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Fig. 5. Postbuckling response of movable, CSCS and CSCF hybrid square plates subjected to equal biaxial compression.
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Fig. 6. Thermal postbuckling response of immovable, clamped hybrid square plates under uniform temperature rise and at constant

actuator voltage.
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uniform temperature rise and constant actuator voltage.
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Fig. 9. Effect of side-to-thickness ratio on thermo-electro-mechanical postbuckling of clamped hybrid square plates.
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The effect of the in-plane load on the non-linear relationship of postbuckling temperature versus central

deflection is displayed in Fig. 8 for piezoelectric FGM hybrid plates ða=h ¼ 20Þ that are subjected to a given

edge compression on the x-axis, a constant electric load Va ¼ �200 V, and uniform temperature change.

The solid lines and dashed lines are for the cases of kx ¼ 1:0h and kx ¼ 1:5h respectively, where
h ¼ ðD�

11D
�
22Þ

1=2
=D0. The postbuckling resistance decreases considerably with the increase in the compressive

edge load.

Fig. 9 depicts the thermo-electro-mechanical postbuckling behavior of piezoelectric FGM hybrid square

plates with side-to-thickness ratio a=h ¼ 20, 40. The plates are subjected to uniaxial compression on the

x-axis, a temperature change DT ¼ 100 �C, and a constant actuator voltage Va ¼ �200 V. The solid lines

and the dashed lines are for a=h ¼ 20, 40 respectively. It is evident from the results that the postbuckling

paths for thicker piezoelectric FGM hybrid plates are higher than for thinner ones. It appears that sec-

ondary instability sets in at relatively small deflections in the cases of the purely aluminum plate of a=h ¼ 40
and the graded plate of a=h ¼ 20 and n ¼ 0:2.

As shown in Figs. 4–9, many postbuckling paths cannot be traced beyond certain load values because of

convergence problems in the iteration process. This phenomenon may be attributable to the fact that the

expected deformation beyond these loads could not be obtained by the iterative process.

6. Conclusions

This paper investigates the postbuckling response of piezoelectric FGM hybrid rectangular plates under

the combined action of uniform temperature change, edge compression, and a constant applied actuator

voltage based on Reddy�s HSDT. A semi-analytical DQ-based iteration technique is used to determine the

thermo-electro-mechanical postbuckling response for plates with two opposite clamped edges. Postbuckling

equilibrium paths are presented for ZrO2/Al rectangular plates in terms of the postbuckling load/tempe-

rature parameter versus central deflection. Dimensionless critical buckling load and temperature parameters

are given in tabular form for clamped hybrid plates. Our results indicate that for hybrid plates which are

not fully clamped, wherein bending curvatures appear from the commencement of loading, bifurcation
buckling does not exist due to the bending–stretching coupling effect. Furthermore, secondary instability

occurs in the thermo-electro-mechanical postbuckling equilibrium paths in many cases. The application of

negative voltage in the actuator layers can improve the buckling and postbuckling strength, but this effect

tends to be weaker as the side-to-thickness ratio a=h decreases, and seems to be very slight when a=h reaches
10. The effects of material composition, temperature change, in-plane forces, and boundary conditions on

the buckling and postbuckling behavior of hybrid plates are discussed and demonstrated through illus-

trative numerical examples.
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Appendix A

Dimensionless quantities of cij and cijk are given as follows:

c14 ¼ ½D�
22=D

�
11�

1=2
; c24 ¼ ½A�

11=A
�
22�

1=2
; c5 ¼ �A�

12=A
�
22
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ðc110; c112; c114Þ ¼ c1½F �
11; ðF �

12 þ F �
21 þ 4F �

66Þ=2; F �
22�=D�

11

ðc120; c122Þ ¼ ½ðD�
11 � c1F �

11Þ; ðD�
12 � c1F �

12 þ 2D�
66 � 2c1F �

66Þ�=D�
11

ðc131; c133Þ ¼ ½ðD�
12 � c1F �

21 þ 2D�
66 � 2c1F �

66Þ; ðD�
22 � c1F �

22Þ�=D�
11

ðc140; c142; c144Þ ¼ ½B�
21; ðB�

11 þ B�
22 � 2B�

66Þ;B�
12�=D

ðc212; c612Þ ¼ ½ð2A�
12 þ A�

66Þ=2;A�
12�=A�

22

ðc220; c222Þ ¼ ½ðB�
21 � c1E�

21Þ;B�
11 � B�

66 � c1ðE�
11 � E�

66Þ�=D

ðc231; c233Þ ¼ ½B�
22 � B�

66 � c1ðE�
22 � E�

66Þ; ðB�
12 � c1E�

12Þ�=D

ðc240; c242; c244Þ ¼ c1½E�
21; ðE�

11 þ E�
22 � 2E�

66Þ;E�
12�=D

ðc310; c312Þ ¼ c1½ðF �
11 � c1H �

11Þ; ðF �
21 þ 2F �

66 � c1ðH �
12 þ 2H �

66ÞÞ�=D�
11

ðc320; c322; c331Þ ¼ ½ðD�
11 � 2c1F �

11 þ c21H
�
11Þ; ðD�

66 � 2c1F �
66 þ c21H

�
66Þ;D�

12 þ D�
66

� c1ðF �
12 þ F �

21 þ 2F �
66Þ þ c21ðH �

12 þ H �
66Þ�=D�

11

ðc411; c413Þ ¼ c1½F �
12 þ 2F �

66 � c1ðH �
12 þ 2H �

66Þ; F �
22 � c1H �

22�=D�
11

ðc430; c432Þ ¼ ½ðD�
66 � 2c1F �

66 þ c21H
�
66Þ; ðD�

22 � 2c1F �
22 þ c21H

�
22Þ�=D�

11

ðc31; c41Þ ¼ ½ðA�
55 � 6c1D�

55 þ 9c21F
�
55Þ; ðA�

44 � 6c1D�
44 þ 9c21F

�
44Þ�=D�

11

ðc511; c512; c516; c517; c518Þ ¼ ½B�
11 � c1E�

11;B
�
21 � c1E�

21;B
�
66 � c1E�

66;B
�
12 � c1E�

12;B
�
22 � c1E�

22�=D

ðc611; c612; c633Þ ¼ ½A�
11;A

�
12;A

�
66�=A�

22

ðc711; c712; c721; c722; c733Þ ¼ ½B�
11;B

�
12;B

�
21;B

�
22;B

�
66�=D

ðcM10; cM12; cM13; cM14Þ ¼ ½ðD�
11 � c1F �

11Þ; ðD�
21 � c1F �

21Þ; c1F �
11; c1F

�
21�=D�

11

ðcM20; cM22; cM23; cM24Þ ¼ ½ðD�
12 � c1F �

12Þ; ðD�
22 � c1F �

22Þ; c1F �
12; c1F

�
22�=D�

11

ðcM31; cM35; cp31; cp35Þ ¼ ½ðD�
66 � c1F �

66Þ; c1F �
66; c1ðF �

66 � c1H �
66Þ; c21H �

66�=D�
11

ðcp10; cp12; cp13; cp14Þ ¼ c1½ðF �
11 � c1H �

11Þ; ðF �
12 � c1H �

12Þ; c1H �
11; c1H

�
12�=D�

11

ðcp20; cp22; cp23; cp24Þ ¼ c1½ðF �
21 � c1H �

21Þ; ðF �
22 � c1H �

22Þ; c1H �
21; c1H

�
22�=D�

11

ðcp16; cp18; cp26; cp28; cp37Þ ¼ c1½E�
21;E

�
11;E

�
22;E

�
12;E

�
66�=D

ðcm11; cm21; cm31Þ ¼ ½2c1ðc1H �
66 � F �

66Þ=D�
11; ðB�

66 � c1E�
66Þ=D; ðD�

66 þ c21H
�
66 � 2c1F �

66Þ=D�
11�

ðcQ10; cQ12; cQ20; cQ22Þ ¼ c1½c1H �
11=D

�
11; c1ð4H �

66 þ H �
12Þ=D�

11;E
�
21=D; ð2E�

66 � E�
11Þ=D�
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ðcQ30; cQ32; cQ34Þ ¼ c1½ðF �
11 � c1H �

11Þ; 2ðF �
66 � c1H �

66Þ; ðF �
12 þ 2F �

66 � c1H �
12 � 2c1H �

66Þ�=D�
11

ðcT1; cT2Þ ¼ ðAT
X ;A

T
Y Þa2=1000acðD�

11D
�
22Þ

1=2
; ðcT4; cT5; cT7; cT8Þ ¼ ðDT

X ;D
T
Y ; F

T
X ; F

T
Y Þa2=1000acDD�

11

ðcE1; cE2Þ ¼ ðAE
X ;A

E
Y Þa2=ðD�

11D
�
22Þ

1=2
; ðcE4; cE5; cE7; cE8Þ ¼ ðDE

X ;D
E
Y ; F

E
X ; F

E
Y Þa2=DD�

11
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