IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 3869-3892

Postbuckling of piezoelectric FGM plates subject
to thermo-electro-mechanical loading

K.M. Liew *®*, J. Yang ¢, S. Kitipornchai ¢

& Nanyang Centre for Supercomputing and Visualisation, Nanyang Technological University,
Nanyang Avenue, Singapore 639798, Singapore
® School of Mechanical and Production Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798, Singapore
¢ Department of Civil Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
d Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Received 4 October 2002; received in revised form 15 January 2003

Abstract

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are
integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform tempe-
rature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration
algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the trans-
verse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-
mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary
conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also
undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature
change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of smart materials, as sensors and actuators, for the control of the mechanical behavior of smart
structural systems, is becoming more prevalent. Some examples of the smart materials deployed include
piezoelectrics, shape memory alloys and rheological-fluids. Here, we aim to investigate the buckling and
postbuckling behaviors of piezoelectric functionally graded material (FGM) hybrid plates, a study which
has not been previously conducted.
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FGMs are microscopically inhomogeneous composites that were developed by Japanese scientists in the
late 1980s. By smoothly changing the volume fraction of the material constituents, the material properties
of FGMs exhibit a continuous variation from one surface to the other, thus eliminating the interface
problem that usually takes place in homogeneous composites. The macro-responses of FGM plate struc-
tures under thermal and/or mechanical loading have gained increasing attention in recent years, especially
from Tanigawa et al. (1991), Praveen and Reddy (1998), Reddy (2000), Shen (2002), Yang and Shen
(2002a), and Liew and Liang (2002). However, the investigation of buckling and postbuckling behavior is
scarce. Feldman and Aboudi (1997) made the first attempt when they discussed the elastic buckling of
uniaxially compressed FGM plates with the volume fractions of the constituents being the function of
spatial co-ordinates (x,y,z). Solutions for plates with simply supported and clamped edges were obtained.
However, some of the results are questionable because, in most cases, no bifurcational buckling could occur
due to the bending-stretching coupling effect in FGM plates. Most recently, Yang and Shen (2002b) in-
vestigated the postbuckling behavior of FGM rectangular plates under transverse and in-plane loads by
using a semi-analytical DQ-based perturbation technique. In these two analyses, classical plate theory
(CPT) was used, and thermal load due to temperature variation was not taken into consideration.

Many studies have reported on the modeling and analysis of smart structures that incorporate surface-
bonded or embedded adaptive piezoelectric materials with composite substrates, as reviewed by Chee et al.
(1998) and Irschik (2002). In terms of the postbuckling deformation of laminated plates with piezoelectric
effects, Oh et al. (2000) presented non-linear finite element formulations for the postbuckling of fully
symmetric and partially eccentric piezolaminated composite plates by using layerwise laminated theory.
Shen investigated the thermal postbuckling (Shen, 2001a) and thermo-mechanical postbuckling responses
(Shen, 2001b) of simply supported, imperfect shear deformable rectangular plates that were covered with
piezoelectric actuators. Reddy’s higher-order shear deformation plate theory (HSDT) and a mixed
Galerkin-perturbation approach were used. As far as the authors are aware, only a few papers in the lite-
rature deal with the structural responses of FGM plates with piezoelectric effects (Ootao and Tanigawa,
2000; He et al., 2001, 2002; Liew et al., 2001a, 2002; Ng et al., 2002), and no prior work has been done on
the buckling and postbuckling characteristics of piezoelectric FGM hybrid plates.

Hence, this paper is devoted to modeling the buckling and postbuckling behavior of piezoelectric FGM
hybrid rectangular plates under the combined action of uniform temperature change, in-plane forces, and
constant applied control voltage in the framework of HSDT (Reddy, 1984) by using a semi-analytical one-
dimensional differential quadrature (DQ) approximation based iterative approach. Subset problems include
the bifurcational buckling of clamped plates due to thermal loads and/or edge compression, thermal
postbuckling, compressive postbuckling, and the thermo-mechanical postbuckling of plates with more
general boundary conditions. Extensive numerical results of dimensionless critical buckling load and
temperature parameters, and the postbuckling equilibrium paths, are presented in tabular and graphical
forms respectively.

2. Problem statement

The FGM hybrid rectangular plate under current consideration is defined in a Cartesian co-ordinate
system (X,Y,Z), where X € [0,a], Y € [0, b] are co-ordinates of a point along the in-plane directions of the
plate and Z is the co-ordinate that is perpendicular to the mid-plane and points upwards. The plate is
comprised of an FGM substrate of thickness % and piezoelectric films of thickness %, that are perfectly
bonded on its top and bottom surfaces as actuators. The FGM layer is made of a combined ceramic-metal
material, the mixing ratio of which is varied continuously and smoothly in the Z direction so that its top
surface (Z = h/2) is pure ceramic, while its bottom surface (Z = —h/2) is pure metal. The material dis-
tribution is governed by
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where V' (Z) is the volume fraction of a material constituent, » is a non-negative volume fraction exponent,
and subscripts ¢ and m stand for ceramic and metal. The effective material properties Py, such as Young’s
modulus E, Poisson’s ratio v, coefficient of thermal expansion «, can be determined as

Peff:(Pc_Pm)(ZZ—+h> +Pm (2)
2h

Suppose that both the FGM and the piezoelectric material are linear elastic throughout the deformation,
and that the plate is initially stress free at 7; and is then subjected to a uniform temperature variation
AT =T — T, a constant electric field (Ey, Ey, Ez), and uniform edge forces py along X-axis and py along
Y-axis. The present work aims to reveal the buckling and postbuckling behavior of the plate under the
combined action of these thermo-electro-mechanical loads.

3. Theoretical formulations
3.1. Governing equations

Let U, V, and W be the plate displacements parallel to the co-ordinates (X, Y,Z), let ¥x and ¥y be the
mid-plane rotations of transverse normals about the ¥ and X axes, and let Uy, V,, W, represent the dis-
placements on the mid-plane (Z = 0) of the plate. According to Reddy’s HSDT (Reddy, 1984), the dis-
placement field of the plate is assumed to be

UX,Y,Z2) =Up(X,Y) + ZPx(X,Y) — 1 Z*(Px + Wox) (3a)
V(X,Y,Z)=VoX,Y) +Z¥y(X,Y) — 1 Z°(Py + Woy) (3b)
W(X,Y,Z) =Wo(X,Y) (3¢)

where ¢; = 4/3h%, and the commas denote partial differentiation with respect to the corresponding co-
ordinates. As geometric non-linearity due to moderately large deflection and small rotations is considered
in the analysis, the non-linear strains can be derived from the above displacement field and by using von
Karman’s assumptions as follows

Ex I3 ey &y

& o= sg)) +Z ag,l) +7z 8(},3) 4)
A 0 1 3

xy v v v
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where

83;)) UO,X + % (Wx)z Sgrl) WX.X
eV} = 8()9) = Voy +%(W4Y)2 , {e) = E(Yl) = Pyy

‘ygg} U()’y + 70‘)( + WﬁxWﬁy ’yg(l}z 'PX,Y + lIIY,X

3) W h774
Exy qIX.X + W)CX (0) — —
- — Y Yy + Wy (6)

{9} = 8(Y3) =—C Vyy+ Wy , 9= { (OYZ) } = {? —|—W’ }

y&éﬂ Wx‘y +Pyx+ 2W xy Tz X .

Y2 Ty 7
2y = /ZZ) — 3¢y Ty
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The linear stress—strain relationship for hybrid FGM plates, taking into account the piezoelectric and
thermal effects, is given by

Ox On On 0 0 0 5'¢ o 0 0 ey
oy On On O 0 0 &y o 0 0 ey Ex
Ty p=1| 0O 0 QOu O 0 Yz ¢ —S0PAT| —1 0 0 O Ey (7)
Tzx 0 0 0 Q55 0 Vzx 0 0 €24 0 EZ
Txy 0 0 0 0 Q66 Vxy 0 €1s 0 0
where 0y; (i,j =1,2,4,5,6) is the elastic stiffness of the FGM layer given by
E vE E
O =Q22=m; lezm; Q44:Q55:Q66:m (8)

Piezoelectric stiffness ey, e, €15, ex4 can be expressed in terms of the dielectric constants ds;, ds,, ds, da and
the elastic stiffness Of (i,j =1,2,4,5,6) of the piezoelectric actuator layers as

ey = (d5n O, +dn0f,), en = (dn0f, +dn05), eu=du0i, es=dis0% 9)

As only transverse electric field component E; is dominant in plate type piezoelectric material, it is as-
sumed that

[Ex Ey E;)"=1[0 0 V,/h,]" (10)

where ¥, is the voltage that is applied to the actuators in the thickness direction.
The total stress resultants are defined by a semi-inverse relationship as

&) AY B FE N-N
M-M ,=|-B) D (F) gl (11)
P-P &) FF H e®

6 _|A D y(O)
{ R/ |D F y(z) (12)
where N', M, P are the sums of the in-plane forces, moments, and higher-order moments due to the

temperature change and electric field: that is,

P « —T —E —+ =T —=E

—N'+N°, M =M +M, P=P +P (13)
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Among these, the thermal stress resultants are

[ N)T( M)T( F)T( ] /2 Ax Ay Dy F}
N, M, P,|= / (1,2,2%){ 4y 3ATdZ = | AT DU FI |AT (14)
Ny, My Py M Axy AL, DI FL
and the electric stress resultants are
[N, My P,| n . By AE  DEFE
N, M. P.|=> / (1,2,2°){ By yE,dZ= | 4% Dt FE|E, (15)
vt B = Ja B A%, DY FE
_NXY MXY PXY . XY XY XY XY
where
Ax (O11 + On)a By dy O, + d»0f,
Ay ¢ =—¢ (O +0n)x 2, By p=—< d30f, +dn05, (16)
AXY 0 B)(y 0
The reduced stiffness of the plate 4, B}, Dj;, E};, Fj;, H}; (i,j = 1,2,6) are determined by

A'=A"'", B =-A"'B, DD=D-BA'B, E=-A'E, F=F—-EA'B, HH=H-EA'E
(17)
in which only the stiffness elements that are associated with subscripts “16”, “26”, “61” and “62”" are zero,

and

h/2 Na Ziy1
(Ayj, By, Dy, Eyj, Fy, Hy) = / / 0,(1,2,22,2°,2*,2°)dZ + ) 0:(1,2,22,2°,24,2°)dZ  (i,j = 1,2,6)
—h/2 k=1 YZ

(18)
h/2 Na Z+1
(4yj, Dy, Fy) = 0,(1,2,29dZ + 04(1,22,24dz  (i,j =4,5) (19)
—h/2 k=1 Y Z

Here N, is the number of actuator layers. -
Let F(X,Y) be the stress function that is related to stress resultants by Ny = Fyy, Ny = F xx,
Nyy = —F xy. We can derive the HSDT-based non-linear equilibrium equations of hybrid FGM plates as

follows:

QX,X + @[Y —3ci(Ryx + Ryy) +c1(Pxxx + 2Pxyxy + Pyyy) = L(W,F) (20)
Myx+Myyy — Oy +3ciRy — 1 (Pyx + Pyyy) =0 (21)
Myyx +Myy — Oy + 3c1Ry —c¢1(Pyyx +Pyy)=0 (22)

The compatibility condition states that
exy +erax — Twvar = (W)’ =W oWy (23)
where the non-linear partial differential operator L( ) = ( Do)y =20 )y )y + )y O iy

3.2. Dimensionless governing equations

By putting Egs. (11) and (12) into equilibrium equations (20)—(22), applying Eqgs. (4) and (11) to com-
patibility equation (23), and introducing the following dimensionless quantities,
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x=X/a, y=Y/b, B=alb, A= (D;DpdiA)"* i =10000 AT, W =TW/A

F=F/(D;\Dy)'?, (V.. %,) = (Px,Py)a/A, (5,.9,) = (5x/a,dy/b)b* /A’
(2er &) = (Pxb?, Pyd) [ (D} D3,)", (N7, N;,NG,) = (Ny, Ny, Ny )a?/ (D}, D)
(My, My, My, M7, M\ M) = (M, My, Myy, My, My, My,)a*/ D}, A

(P, P,, Py, P!, P, P) = c\(Pyx, Py, Pxy, Py, Py, Pyy)d® /D, A

yIrTxy

where 0y, dy imply the in-plane displacements in the X-axis and the Y-axis, and the non-linear governing

Egs. (20)—(23) can be transformed into dimensionless form as

Liu(W) = Lio(W,) = Lis(P,) + 714L1a(F) — Lis(N*) — Lig(M*) = 3, f°L(W ,F)
Lot (F) + 9aulon (W) + v2alos(Wy) — a4loa(W) — Las(N™) = _%V24ﬁ2L(W» w)
Lyy(W) + Lap(Wy) — Lss(Vy) + y14L3a(F) — Lss(N™) — L3g(S™) = 0

La(W) = Lo (¥x) + Las(¥y) + 71Las(F) — Las(N) — Lag(S") = 0

(25)
(26)
(27)

(28)

where $* = M* — ¢\ P*, L( ) = ( )XX( ),y =20 )5 ( )+ (), () The linear partial differential operators
are the same as those that are given by Yang and Shen (2002a) W1th the exception of those that are as-

sociated with thermal and piezoelectric effects, as follows

Lis(N*) = [Ny + 17 N) ] + 2877335, + B[22y + 12N,

Li(M*) = M}, +2BM;, . + B°M;,

Lys(N™) = [p61oNy + N1 — BreasNy + BlenN; + Ye12N) 1,
Lys(N*) = [psuN; + v52N) ], + Bysigy,,.  Ls(ST) =87, + ﬁS;”
Lys(N™) = y516N,, . + BlysiaNy +vsisNy . Las(S7) = S, + BS;,

(29)

Obviously, these terms will vanish when, in particular, the temperature field and the electric field are

uniform through the plate domain, or vary in the Z-direction only.
The non-dimensionalized moments and their higher-order counterparts are of the form

M, = —y,,(y, B°F, T V71 F ) + Va0 Pex + 02 By — a3 W + Van1aBPWoy)
+ [“/14(?711?71 +9721772) + Vraldr + a1 Ve + V121 782) + Vral Ez

M, = _714(“/712182Eyy + 1722 F ) + Var20 Pox + Va2 By — Va3 Woe + V24 BW,)
+ 10702701 + 1922772) + Vsl + [1a(n2ver + ¥722782) + VeslEz

M,y = 11477338Fy + Vurmi (P + B Tx,y) = 2935 Wy

P = —V14(VP18ﬁ2Ew + Vp16F ) + Vp10Pax + 0012855 — (Vp1s W + Vp1aBW,y)
+ Dupisvr + Vp16772) + Vr7lAr + 114 (VpisVer + Vpi6Ve2) + VErlEz

Py = —914(7pasB Foy + Vp26Fx) + 7p20 P + 7pm BP0 — (1p2sWox + 7p2aBW,y)
+ [1a(Vp2s V71 + Vp26V12) + Vrsldr + [01a(VesVer + Vp26Ve2) + VeslEz

Py = 7147p37BF sy + V31 (Pyx + B¥sy) — 27p3sS Wy

(30a)

(30b)

(30c)

(31a)

(31b)

(31c)
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The out-of-plane boundary conditions for simply supported (S), clamped (C), and free (F) edges are

S W=%=M,=P,=0 (32)
C: W=W,=¥,=W,=0 (33)
F: Q=M ,=M,=P,=0 (34)

Depending upon the in-plane supporting characteristics, two types of in-plane constraints, one that is
termed “movable”, where in-plane expansion/contraction may occur, and another that is termed “im-
movable”, where no in-plane expansion/contraction is allowed, will also be considered. However, in both
cases, the tangential motion parallel to the edges is unconstrained. This requires that

F,s=0, Fy+ 4 =0 (for movable edges) (35)
F,=0, 6,=0 (for immovable edges) (36)

Subscripts # and s refer to the normal and tangential directions of the plate edge. M and O are the
dimensionless generalized moment and transverse shear force, which are given by

M; = 21 BWay + 7147m21 BF oy + V3t (B sy + W) (37)

Q: = _(VQIO VV,xxx + VQIZﬁZ VV,x}y — V31 Wx) - V14(7Q20Exxx + VQZZﬁZFJJG’) + 73 vy
+ 7030 Porox + "/Q3252 Vi +7034BY sy (38)

In general, the immovable condition cannot be satisfied at every arbitrary point on the corresponding
edge, and is therefore fulfilled in a weak form as

S = —(a, +alr +a"E;) [y’ =0 atx=0,1 (39a)
Sy =—(by+ bl ir + bLE) /7,4 =0 aty=0,1 (39b)
where
1 1 1
ay = A {[V§4ﬁ2Ew — VsFx + 724 (7511 P + 72338%50) — V24 (V15 W + ”/pzsﬁz Wy)) — 57’24(Wx)2} dxdy

1l
1
b, = {[Exx - 75/32F)9' + 724 (V512 Ve + 75188Y)5) — ”/24(%16 W + széﬁz W) — 5?24ﬁ2(Wy)2} dydx
o Jo

1 1 1 1
ay = — - (7271 — vsvr2) dxdy,  b) = — / / (vr2 = vsyrr) dxdy
0 0

1 1 1 1
a; = — /0 /0 (73aver — V57p2) dxdy,  BY = — /0 /O (Vp2 = 7s7p1) dxdy
(40)
To include the uniform membrane stress state in the plate, the stress function is expressed as
F =072 +x2) + f(x,) (41)

where A; and A, are combinations of the applied in-plane forces (4, 4,) and the reactions of immovable
constraints, and can be determined according to different in-plane boundary conditions by:
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(a) when the plate is immovable at four edges

Ao = [s12by — spa, + (SlzbyT — spal)ir + (S12bf — 52a5)E.]/(s1, — s11522) (42a)

/1; = [Slzax — Sllby —+ (Slzaz — Sllb;)/lf —+ (Slgaf — Sllbf)Ez]/(S%z — S11522) (42b)
(b) when the plate is movable at x = 0,1 and immovable at y = 0, 1
A= ;Lx, i; = [by + b:{)»T + bez — Slzlx]/Szg (43a,b)

(c) when the plate is immovable at x = 0,1 and movable at y =0, 1

Jo=la, + aI/IT + asz —suhl/su, A =4, (44a.b)

)
(d) when the plate is movable at all edges
2=y ,1; =) (45a,b)

where s11 = 3,/714s S12 = Y612/ 714> 522 = 1/714-

Dimensionless quantities of y;; and y,; are listed in Appendix A.

4. Semi-analytical formulations

A semi-analytical DQ-based iteration process is employed to determine the postbuckling response of the
plate. The basic idea is to convert the non-linear partial differential governing Eqgs. (25)-(28) and the
associated boundary conditions into a set of ordinary differential equations through the DQ approximation
in x-axis, and then apply the Galerkin procedure to establish a non-linear algebraic equation system, from
which the postbuckling path can be determined by an iterative scheme.

4.1. Solution methodology

As shown in Fig. 1, the plate domain is in the first place discretized along the x-axis by a number of nodal
lines parallel to the y-axis, among which x, = 0.0001 and xy_; = 0.9999 are arranged to be quite close to
x; =0 and xy = 1 to impose the six boundary conditions at each of the two edges (x = 0,1). The other
nodal lines are located according to the cosine spacing pattern as

1 (i —2)
==11— 46
X =5 { cos— ] (46)

where N is the total number of nodal lines. Designating the unknown function values at an arbitrary
sampling nodal line x = x; as

Wi=Wx,y), fi=fp), Po=¥(uy), Pi=%(p) i=1...,N (47)
and applying the DQ rule to the dimensionless partial differential governing equations (25)—(28), yields
Ly (W) = Lyy(Ps) _Llﬁ(lpy) +11alia(f) = "/14ﬁ2Li(va) (48)
Ly (f) 4 72aLsy (W) + 724l (W) = poaly (W) = =Sy L' (W, W) (49)
Ly (W) + Ly (¥) = Lig(¥y) + 71aL3y(f) = 0 (50)

Ly(W) = Ly () + Lig(P,) + 714Liy () = 0 (51)



K M. Liew et al. | International Journal of Solids and Structures 40 (2003 ) 3869-3892 3877

Yy A

\

1 2 i N

Fig. 1. Nodal line system in a rectangular plate domain.

where the discretized differential operators are

N
Ll11 - VIIOZCU +2V1]2ﬂ ZC Jyy +V114B4W,y}yy+yl4ﬁz (jizc W +/1; tyv)
j=1

Ly (P,) = <“/12()ZC ij‘*‘/mﬁ ZC qsz)w)

J Jj=

Ly(?,) = (szc qlvv"‘“/mﬁ ytm)

Jj=1

i 2 .
Liy(f) = <V140 Z f/ + 710 Z Ci(j )f/w + V144ﬁ4fi,ww>
j=1

N N N N
i 2 1 1 2
L(w.f) = (fiw Z Ci(j)Wi - 22 Cz’(j)W/}y Z ka)fk,y + Wy Z Ci(j >f/)
= — =

Jj=1

N
LIZI (f) Z C:/ /I} + Yleﬁ Z CU f) Jy + V24ﬁ f; Iy
J=1
i 3 1
Ly (¥ <7220 Z Ci(j ) ¥+ 1 Z Ci(j ) ij,yy)
=1 j=1
N oy
Loy(¥ <V231 G Wy + "/233ﬂ i m)
j=1
v N
i 2
Ly, (W) = <“/240 Z Ci(j ) Wi+ p2up Z C W/yv + "/24454 Wiow)
j=1 j=1
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N
L(w _< ,WZC -2 ¢} VI/ijClk Wi, + ,WZC,, )
k=1

; 1
Ly (W) =73 ZC W, +“/31026' +V312ﬁzzc‘(')ijy

J=1

Ly, (¥.) = (“/31 Yii — Va0 Z Ci(jz) Yy — V32252 Vi )n> Lyy(¥)) = 13318 Z C Yy

j=1

N
i 1
Ly (f) = <V220 Z f, + szzﬁz Z Czj(/ )fjw>
=1

N

J=1

=

N
Ly (W) =ya By + V411ﬁz C W/y + 738, s Lip(Px) = “/331ﬁz C qsz

Liz('ly)) <V41 — V430 Z C - “/432[3 Vi w)

Liy(f) = <V231 Z D+ y233ﬁ2ﬁ,yyy> i=23N-2,N-1 (52)

Here, Cg‘) is the weighting coefficient for the kth partial derivative of a unknown function with respect to x,

and can be determined from the recursive formulae that are given by, for example, Bert and Malik (1996)

and Liew et al. (1996). After incorporating the associated boundary conditions that are being discretized in

the same way, we obtain a system of 4N ordinary differential equations in terms of W, f;, ¥y;, and ¥,,.
At each nodal line, ¥, f;, ¥y, and ¥,; are expanded in series form as

wY o, [am 000 0 ( Wu()

il 0 by 0 0]) ful

'Pxi B mz—; 0 0 Cim 0 'I/xim (Y) (53)
lI/yi - 0 0 0 dim qjyim (}/ )

where M is the truncated number of the series expansions, and a;,, bin, Cin, diy are constants to be deter-
mined.

Solutions are sought for plates that are clamped at y = 0, 1, and free, simply supported, or clamped at
x=0,1. To this end, W,,(¥), fin(y), Pxim(y), and ¥,,,(y) are chosen to satisfy the clamped boundary
conditions and take the form of

W/Em (y) = Sin Oy — Sil’lh Oy — ém(COS Oy — COSh amy) (548')
Sim(y) = sin o,y — sinh o,y — &, (cos a,y — cosha,,y) (54b)
Vin(y) = sin(mny);  ¥ym(y) = sin(mmny) (54c,d)

where £, = (sina,, — sinha,,)/(cosa, — cosha,,), o, = 2m+ 1)n/2.

Putting Egs. (53) and (54) into the 4N ordinary differential equations, and then applying the Galerkin
procedure, gives a non-linear algebraic system that governs the postbuckling behavior of the plate under
thermo-electro-mechanical loads as

([Ko] + A[KG] + A7 [Kr] + [KNL(DP)]) anrsanne P awaext = {R} anarn (55)
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where {®} implies an unknown vector that is composed of @, bis Cins diy (1 =1,... ., N;m =1,... M), {R}
stands for the thermo-electro-mechanical load vector, [Ky] is the constant coefficient matrix, [K;] and [Kr]
are coefficient matrices that are associated with applied in-plane force parameter A (4, = 5,4, 4, = s,4) and
temperature parameter Ar, [Kni] is a non-linear matrix that is dependent on {@}, and s, and s, are the
proportion ratios for applied in-plane forces.

It should be pointed out that the above solution procedure is also valid for isotropic plates that are
simply supported at y = 0, 1, but the functions W,,(y), fin(»), ¥um(»), and ¥,;,(y) should be replaced by

Win(y) = sin(mmy) (56a)
fin(y) = sina,,y — sinh o,y — &,,(cos o,y — cosh ar,,,) (56b)
Vim(y) = sin(mmny);  ¥yum(y) = cos(mmy) (56¢,d)

4.2. Subset problems

4.2.1. Bifurcation buckling of piezoelectric FGM hybrid plates

Due to the presence of bending-stretching coupling elements in reduced stiffness matrices (17), even
minimal in-plane action can give rise to deflections and bending moments in piezoelectric FGM hybrid
plates. Therefore, bifurcation-type buckling will not occur, except when the plate is fully clamped. This is
because the bending moments that are generated by thermo-electric-mechanical loads can be neutralized by
the support reacting moments that are produced by the four clamped edges, and the plate can remain flat
before buckling (Leissa, 1986; Qatu and Leissa, 1993). As another special case, isotropic plates, which are
free from the bending-stretching coupling effect, are also capable of bifurcation-type buckling.

For clamped piezoelectric FGM hybrid plates, the critical buckling load parameter can be found by
solving the following eigenvalue equation

([Ko] + ;LCF[K;L})4NMX4NM{(D}4NM><1 = {0}4NM><1 (57)
and the critical buckling temperature parameter can be determined from
([Ko] + Aree[Kr]) snnrsamae A Planarct = {0%anarsr (58)
The buckling load for a thermally prestressed clamped plate is given by
([Ko] 4 A7[K7] + Zet (K] anpsxanne L P amaras = {0 anarr (59)
and the buckling temperature for an initially stressed clamped plate is defined by
([Ko] + AIK3] + ZreelKr]) s amae A PYannrct = {0t anrcr (60)

The lowest eignvalues A, A7 denote the critical buckling load parameter and the critical buckling
temperature parameter. Note that iy < i(}cr in Eq. (59) and 1 < zg in Eq. (60) where )Lgr is solved from
Eq. (57) and /), is solved from Eq. (58).

4.2.2. Postbuckling response of piezoelectric FGM hybrid plates

After buckling, the postbuckling equilibrium path of the plate can be traced by solving the non-linear
equilibrium equation (55) with an iterative scheme. In this paper, compressive postbuckling (ir = 0),
thermal postbuckling (1 = 0), and thermo-mechanical postbuckling (either A or A is given) are included as
subset problems.

For isotropic or clamped piezoelectric FGM hybrid plates that exhibit bifurcation instability, the right-
hand side vector in Eq. (55) becomes zero, as no bending curvatures take place and/or, the bending
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moments and membrane forces that are induced by thermo-electro-mechanical loading will not be involved
in the clamped boundary conditions, and therefore do not appear in Eq. (55), which in these cases becomes

([KO} + )~[KA] + /IT[KT] + [KNL(¢)])4NM><4NM{(D}4NM><1 = {0}4NMx1 (61)

This equation is solved by an iterative scheme with the following steps:

(a) Begin by solving an eigenvalue problem without considering geometric non-linearity in Eq. (61) to ob-
tain the linear eigenvalue and corresponding eigenvector as the initial guesses of the buckling parameter
and buckling mode.

(b) For a given maximum dimensionless central deflection, scale up the buckling mode and calculate the
non-linear matrix [Kyp(®)] to form a new eigenvalue system (61).

(c) Solve the new eigenvalue Eq. (61) to produce a new eigenvalue and eigenvector;

Repeat steps (b) and (c) until the relative difference between the eigenvalues (buckling load or buckling
temperature) that is obtained from the subsequent two iterations is within the specified tolerance. Here,
the error tolerance is n < 1073,

(d) Repeat step (b)—(d) to determine the postbuckling equilibrium path.

For piezoelectric FGM hybrid plates in which bending curvatures, non-uniform membrane stresses, and
bending moments develop when subjected to thermo-electro-mechanical loads, the right-hand side force
vector in Eq. (55) is non-zero, and eigenvalue type instability will not occur. In such a case, the modified
Newton—-Raphson technique will be used to obtain the equilibrium paths.

5. Results and discussion
In what follows, a symbolic notation is used to indicate the out-of-plane edge supporting condition,

“CSCF”’: for example, when it refers to a plate that is clamped at y = 0, 1, simply supported at x = 0, and
free at x = 1.

5.1. Convergence and comparison studies

Convergence studies are undertaken in Tables 1 and 2 by comparing the results with varying numbers of
nodal lines N and truncated series number M. The present method converges well enough to yield results

Table 1
Buckling load parameter A = pyb*h/m*D for clamped isotropic rectangular plates that are subjected to in-plane loads
b/h Source Uniaxial compression Biaxial compression
a/b=0.5 a/b=1.0 a/b=0.5 a/b=1.0
20 NxM=9x3 9.8141 3.4245 9.4506 3.2744
NxM=13x5 17.1668 9.6251 13.3755 5.0791
NxM=17x5 17.1636 9.3884 13.3685 5.0787
NxM=21xT7 17.1636 9.3867 13.3683 5.0786
Liew et al. (2001b) 16.918 9.5227 13.766 5.0673
Wang et al. (1993) 17.199 9.5526 13.963 5.0840
10 NxM=9x3 8.2996 3.0811 7.9595 2.9973
NxM=13x5 13.2316 8.0408 10.4606 4.5736
NxM=17x5 13.2287 8.3329 10.4606 4.5734
NxM=21xT7 13.2288 8.3314 10.4607 4.5734
Liew et al. (2001b) 12.462 8.1226 10.173 4.4535

Wang et al. (1993) 12.974 8.2733 10.541 4.5400
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Table 2
Buckling temperature parameter Ay, for isotropic square plates that are subjected to uniform temperature change

Plate type Present results Existing results

NxM=9x3 NxM=13x5 NxM=17x5 NxM=21x7

Clamped
b/h =100 0.2532 0.3333 0.3334 0.3334 0.3374* 0.3357°
Simply supported
b/h =100 0.1265 0.1265 0.1265 0.1265 0.1264¢ 0.1265¢
b/h=10 12.0018 12.0016 12.0016 12.0016 11.8300¢ 11.9778¢
b/h=>5 41.6120 41.6114 41.6113 41.6113 39.90¢ 41.2971¢

#Results given by Gossard et al. (1952).

®FSDT results given by Singha et al. (2001).

“HSDT results given by Shen (1998).

9 Three-dimensional results given by Noor and Burton (1992).

with sufficient accuracy when N x M = 17 x 5 for clamped isotropic plates under uniaxial compression in
Table 1, when N x M = 13 x 5 for plates that are exposed to uniform temperature change in Table 2, and
for clamped isotropic plates under biaxial compression in Table 1. Hereafter, N x M = 17 x 5 is used in all
numerical computations.

Before proceeding to the buckling and postbuckling analysis of piezoelectric FGM hybrid plates, four
illustrative examples are solved to validate the accuracy and effectiveness of the present formulation. Direct
comparisons are made between our results and those from the literature.

In Table 1, the buckling load parameter, i, = pyb*h/n*Dj,, for clamped isotropic rectangular plates
(v =0.3) that are subjected to uniaxial and biaxial edge compression is compared to the FSDT results of
Wang et al. (1993) and the 3-D solutions of Liew et al. (2001b). Good agreement is noticed.

Table 2 gives the critical temperature parameter Ay for isotropic square plates (v = 0.3) that are sub-
jected to uniform temperature change. The computation data are b/h = 100, 10, 5, & = 1.0 x 10~ for the
simply supported plate, and b/h = 100, « = 2.0 x 107° for the clamped plate. The results by Gossard et al.
(1952), the 3-D elasticity solution of Noor and Burton (1992), the FSDT solution of Singha et al. (2001),
and the HSDT solution of Shen (1998) are provided for comparison. Clearly, the present results agree well
with these previous results.

Fig. 2 displays the postbuckling load-deflection curves for a simply supported, isotropic, moderately
thick plate (b/h = 10, v = 0.3) under equal biaxial edge compression. Direct comparison shows excellent
correlation between the results of the present analysis and those of Bhimaraddi (1992).

The thermal postbuckling equilibrium path for a simply supported, isotropic square plate (v = 0.15)
under uniform temperature change is depicted in Fig. 3. The longitudinal edges of the plate are restrained:
that is, the plate is immovable at x = 0, 1. The present curve is almost identical to that which was obtained
by Librescu and Souza (1993).

5.2. Buckling of clamped FGM plates

FGM with a mixture of zirconia and aluminum for the FGM substrate and G-1195N for the piezoelectric
layers is used for the plate, which is referred to as ZrO,/Al. The actuator layer thickness is 4z, = 0.001 m.
The material properties for zirconia, aluminum, and G-1195N are listed in Table 3.

The buckling temperature parameter Az = o, AT x 10° for fully immovable, clamped piezoelectric FGM
hybrid rectangular plates (a/b = 1.0, 1.5; a/h = 80, 40, 20) that are subjected to uniform temperature
change and constant electric field is calculated and presented in Table 4. Five electric loading cases are
considered: ¥, = 0, 200, +500 V. Here ¥, = 0 V denotes a grounding condition. The results show that the
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Fig. 2. Comparison of postbuckling load-deflection curves for a movable, simply supported, isotropic square plate under biaxial edge
compression.
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Fig. 3. Comparison of postbuckling load-deflection curves for a simply supported, isotropic square plate under uniform temperature
change.

Table 3

Material properties of FGMs and piezoelectric materials
Properties Zirconia Aluminum G-1195N
Elastic modulus £ (GPa) 151.0 70.0 63.0
Poisson’s ratio v 0.3 0.3 0.3
Coefficient of thermal expansion o (1/°C) 1073 23x107° 1.2x107*
Thermal conductivity x (W/mk) 2.09 204 5.0
Piezoelectric constant ds; (m/V) - - 2.54 x 10710
Piezoelectric constant di; (m/V) - - 2.54 % 10710

critical buckling temperature decreases with the increase of the volume fraction index # (i.e., as the amount
of zirconia reduces), and increases as the plate aspect ratio a/b becomes larger. Moreover, the buckling
temperature can be increased by applying negative voltage on the actuator layers, because it makes the plate
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Table 4
Buckling temperature rise (°C) for fully immovable, clamped piezoelectric FGM hybrid rectangular plates that are subjected to
uniform temperature change and a constant electric field

Actuator a/b=1.0 a/b=1.5

voltage 7,1, n=02 n=20 an=50 Al ZrO, n=02 n=20 n=50 Al

Va (V)

a/h =80
500 22.744 15.258 9.5772 8.7394 4.5573 51.153 37.226  26.785 25.646 18.686
200 29.102 21.137 15.171 14.515 10.521 55.392 41.145 30514 29.497 22.662
0 33.341 25.056 18.899 18.365 14.496 58.218 43758 33.000 32.063 25312
-200 37.580 28.976 22.628 22.216 18.472 61.044 46371  35.486 34.630 27.963
-500 43.939 34.855 28.222 27.991 24.435 65.283 50.290  39.215 38.481 31.938

a/h =40
500 190.78 140.73 103.15 99.281 74.949 351.64 26341  197.07 190.78 149.33
200 200.31 149.55 111.54 107.94 83.894 355.88 26733 200.80 194.63 153.31
0 206.70 155.43 117.14 113.72 89.857 358.71 269.94  203.29 197.20 155.96
—200  213.03 161.31 122.73 119.50 95.821 361.53 272.56  205.78 199.77 158.61
-500  222.57 170.13 131.12 128.16 104.77 365.77 276.47  209.50 203.62 162.59

alh =20

500 787.42 590.93 441.15 426.02 334.36 1359.1 1025.8 767.57 740.25 587.37
200 796.96 599.75 449.54 434.68 343.30 1363.4 1029.7 771.30 744.10 591.34
0 803.32 605.63 455.13 440.50 349.27 1366.2 1032.3 773.79 746.68 593.99
=200 809.67 611.51 460.72 446.23 355.23 1369.0 1034.9 776.27 749.24 596.64
=500 819.21 620.33 469.11 454.98 364.18 1373.3 1038.8 780.00 753.09 600.62

contract. In contrast, positive voltage makes the plate stretch, and accordingly decreases the buckling
temperature.

Table 5 compares the buckling load parameter .. = pyb*/(n*Dy) for clamped piezoelectric FGM hybrid
rectangular plates (a/b = 1.0, 2.0, 4.0; a/h = 100, 40, 20, 10) that are movable at all edges and subjected to
uniaxial and biaxial edge compression. D is chosen to be the value of D}, of an isotropic zirconia plate with
a/h = 10. The buckling load is dramatically reduced as a/b changes from 1.0 to 4.0. It is noteworthy that
for a fully movable plate, the constant actuator voltage has no effect on the critical buckling load because
the electrically induced deformation can develop freely in the in-plane direction of the plate.

The buckling problem of initially stressed clamped piezoelectric FGM hybrid plates under combined
loads is also studied. Critical buckling load parameter /. is given in Table 6 for thermally prestressed
square plates that are movable at x = 0, 1 and subjected to uniaxial compression in the x-axis while under
constant actuator voltage V, = £200 V. The plates are assumed to be initially loaded by various uniform
temperature change: u = 0.0, 0.2, 0.4, 0.6, where ;1 = AT /AT, is the thermal load factor and AT refers to
the critical value of the temperature change for the plates without mechanical and electric loads. As ex-
pected, the buckling load decreases as the temperature increases.

In Tables 4 and 6, the effect of actuator voltage becomes more obvious as the side-to-thickness ratio a/h
increases, and appears to be rather slight in the case of a/h = 10. This indicates that applied voltage in the
piezoelectric actuator layers will play a more important role in controlling the bifurcation buckling in
thinner FGM plates.

5.3. Thermo-electro-mechanical postbuckling of FGM plates

This section describes the postbuckling analysis of piezoelectric FGM hybrid plates under thermo-
electro-mechanical loads. The results are given in dimensionless form in Figs. 4-9, in terms of the
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Table 5
Buckling load parameter A, for movable, clamped piezoelectric FGM hybrid rectangular plates that are subjected to uniform edge
compression

Material Uniaxial compression Biaxial compression
composition a/b=1.0 a/b=20 a/b=14.0 a/b=1.0 a/b=20 a/b=4.0
a/h =100
Zr0, 9.7809 6.5255 3.3300 5.2700 3.8918 2.7899
n=02 7.9366 5.1951 2.6662 4.2634 3.1647 2.2373
n=20 6.3089 4.3974 2.2179 3.3958 2.5074 1.8488
n=>5.0 5.9428 4.0738 2.0608 3.1958 2.3587 1.7223
Aluminum 4.5342 3.0251 1.5437 2.4430 1.8041 1.2933
a/h =40
ZrO, 9.6938 5.6245 2.7629 5.2267 3.8001 2.3661
n=02 7.8723 4.4824 2.2241 42514 3.0965 1.9088
n=20 6.2517 3.7926 1.8414 3.3676 2.4476 1.5691
n=>5.0 5.8829 3.5047 1.6972 3.1662 2.2964 1.4487
Aluminum 4.4938 2.6074 1.2808 2.4230 1.7617 1.0969
a/h =20
Zr0, 9.3922 4.6125 2.0500 5.0789 3.5072 1.7627
n=02 7.6484 3.7346 1.6790 4.1413 2.8762 1.4480
n=20 6.0544 3.0833 1.3594 3.2711 2.2568 1.1635
n=>5.0 5.6770 2.8074 1.2291 3.0658 2.0998 1.0522
Aluminum 4.3540 2.1383 0.9504 2.3545 1.6258 0.8171
a/h=10
Zr0, 8.3229 2.8570 1.1441 4.5734 2.7013 0.9640
n=02 6.8602 2.3795 0.9595 3.7599 2.2573 0.8116
n=20 5.3683 1.8829 0.7514 2.9421 1.7304 0.6309
n=>5.0 4.9717 1.6758 0.6655 2.7287 1.5761 0.5578
Aluminum 3.8673 1.3245 0.5304 2.1201 1.2522 0.4469

dimensionless load parameter 4, = pyb*/(4n>Dy) or the temperature parameter i; = a. AT x 10° against the
dimensionless central deflection W /h.

Fig. 4 shows the compressive postbuckling response of fully movable, clamped piezoelectric FGM hybrid
square plates (a/h = 10) under equal biaxial edge compression. As expected, the postbuckling load-
carrying capacity is the maximum for the isotropic zirconia plate, the minimum for the isotropic aluminum
plate, and decreases as the volume fraction index » increases due to the degradation in the plate stiffness.
This trend can also be observed in the other examples. Clamped piezoelectric FGM hybrid plates do exhibit
bifurcation-type instability, and the bifurcation point is represented by the intersection of the postbuckling
curve with the load ordinate, and corresponds to the critical buckling load. In these cases, the prebuckling
path overlaps the load ordinate. Note that the postbuckling curve for the plate with n = 0.2 suddenly goes
down when W./h > 0.9.

Fig. 5 gives the postbuckling response for movable CSCS and CSCF piezoelectric FGM hybrid square
plates under the same loading condition. Compared with CSCS plates, the CSCF plates are capable of
carrying higher loads in the postbuckling phase. The results also confirm that when the plate is neither
isotropic nor fully clamped, bifurcation-type instability cannot take place. Irrespective of the magnitude of
in-plane forces or temperature change, the existence of bending—stretching couplings in these graded plates
not only gives rise to bending moments and in-plane stresses, but also produces lateral deflections, as was
discussed in Section 4.2.1.

Moreover, the postbuckling curve for CSCS plates with n = 0.2 suddenly drops at about W./h > 0.44
and then steadily increases, which indicates the possibility of the occurrence of secondary instability: that is,
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Table 6
Buckling load parameter A, for thermally prestressed, clamped piezoelectric FGM hybrid square plates that are movable at x = 0, 1
and subjected to uniaxial compression and a constant electric field

Tempera- V, =—-200 V V, =200V

turerise, 7.0, n=02 n=20 an=50 Al ZrO, n=02 n=20 n=50 Al

0

a/h =100
0.0 5.6127 4.6247 3.7383 3.5387 2.7840 4.9238 3.9380 3.0481 2.8473 2.0946
0.2 4.6778 3.8897 3.0990 2.9214 23183 4.1107 3.3245 2.5306 2.3522 1.7505
0.4 3.7110 3.1299 2.4383 2.2837 1.8373 3.2661 2.6839 1.9935 1.8393 1.3916
0.6 2.6847 23142 1.7419 1.6140 1.3292 2.3585 1.9714 1.4210 1.2968 1.0023

alh =40
0.0 5.2818 4.3063 3.4228 3.2215 2.4780 5.1715 4.1963 3.3122 3.1108 2.3677
0.2 4.4018 3.6245 2.8373 2.6588 2.0649 43109 3.5340 2.7462 2.5676 1.9740
0.4 3.4898 29171 22312 2.0766 1.6369 3.4185 2.8456 2.1599 2.0054 1.5655
0.6 2.5175 2.1487 1.5897 1.4637 1.1810 2.4653 2.0940 1.5384 1.4129 1.1288

a/h =20
0.0 5.0928 4.1551 3.2850 3.0979 2.3683 5.0651 4.1275 3.2572 3.0519 2.3406
0.2 4.2340 3.4885 2.7176 2.5373 1.9689 42111 3.4658 2.6947 2.5144 1.9460
0.4 3.3419 2.7948 2.1288 1.9749 1.5540 3.3239 2.7768 2.1109 1.9570 1.5361
0.6 2.3913 2.0422 1.5058 1.3829 1.1120 2.3782 2.0286 1.4929 1.3701 1.0990

a/h =10
0.0 4.5770 3.7634 2.9456 27322 2.1237 4.5700 3.7564 2.9386 2.7252 2.1167
0.2 3.7766 3.1295 2.4230 2.2421 1.7523 3.7708 3.1237 24172 2.2362 1.7465
0.4 2.9407 2.4660 1.8781 1.7312 1.3645 2.9362 2.4614 1.8735 1.7266 1.3599
0.6 2.0549 1.7545 1.3032 1.1941 0.9535 2.0516 1.7512 1.2999 1.1909 0.9502

a snap-through phenomenon may take place. Generally, the transition from the primary postbuckling path
to the secondary postbuckling path is associated with the change of the postbuckling displacement mode
shape.

Fig. 6 investigates the thermally induced postbuckling behavior of fully immovable, clamped piezo-
electric FGM hybrid square plates with side-to-thickness a/h = 20 under uniform temperature change. The
effect of the actuator voltage is also examined. The solid lines and the dashed lines represent the post-
buckling response for the cases of ¥, = —200 and 200 V respectively. As revealed in our buckling analysis,
the application of negative voltage does improve the postbuckling strength to some extent, though not
significantly. It is interesting to see that in the large deflection stage, the graded plate with n = 5.0 gains
postbuckling strength marginally, while other plates can develop greater load-carrying capacity.

Thermo-electro-mechanical postbuckling analysis is performed in Figs. 7-9 for clamped piezoelectric
FGM hybrid square plates that are immovable at y = 0,1 but movable at x = 0, 1. Parametric studies are
undertaken to highlight the influence of in-plane prestress, prescribed temperature change, and the side-to-
thickness ratio on the postbuckling characteristics. The postbuckling paths under the combined action of
temperature change, applied voltage, and mechanical loads are somewhat different from those which are
obtained in mechanically or thermally induced postbuckling problems.

In Fig. 7, we assume that the plate (a/h = 10) is subjected to edge compression on the x-axis and is
undergoing a uniform temperature change AT (=100, 300 °C). The applied actuator voltage is fixed at
V, = =200 V. All graded plates in this example will experience secondary instability. It is also evident from
the figure that, in general, the higher the temperature, the lower is the postbuckling strength. However, this
does not hold for piezoelectric FGM hybrid plates with » = 0.2 and 2. In these two cases, postbuckling
paths at AT = 300 °C surpass those at AT = 100 °C when W ./h > 0.4.
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Fig. 4. Postbuckling response of movable, clamped hybrid square plates under equal biaxial compression.
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Fig. 5. Postbuckling response of movable, CSCS and CSCF hybrid square plates subjected to equal biaxial compression.
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Fig. 6. Thermal postbuckling response of immovable, clamped hybrid square plates under uniform temperature rise and at constant

actuator voltage.
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Fig. 7. Effect of temperature rise on thermo-electro-mechanical postbuckling response of clamped hybrid square plates under uniaxial
compression and constant actuator voltage.
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Fig. 9. Effect of side-to-thickness ratio on thermo-electro-mechanical postbuckling of clamped hybrid square plates.
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The effect of the in-plane load on the non-linear relationship of postbuckling temperature versus central
deflection is displayed in Fig. 8 for piezoelectric FGM hybrid plates (a/h = 20) that are subjected to a given
edge compression on the x-axis, a constant electric load ¥, = —200 V, and uniform temperature change.
The solid lines and dashed lines are for the cases of A, =1.00 and A, = 1.50 respectively, where
0 = (D;,D3,)"?/Dy. The postbuckling resistance decreases considerably with the increase in the compressive
edge load.

Fig. 9 depicts the thermo-electro-mechanical postbuckling behavior of piezoelectric FGM hybrid square
plates with side-to-thickness ratio a/h = 20, 40. The plates are subjected to uniaxial compression on the
x-axis, a temperature change AT = 100 °C, and a constant actuator voltage ¥, = —200 V. The solid lines
and the dashed lines are for a/h = 20, 40 respectively. It is evident from the results that the postbuckling
paths for thicker piezoelectric FGM hybrid plates are higher than for thinner ones. It appears that sec-
ondary instability sets in at relatively small deflections in the cases of the purely aluminum plate of a/h = 40
and the graded plate of a/h =20 and n = 0.2.

As shown in Figs. 4-9, many postbuckling paths cannot be traced beyond certain load values because of
convergence problems in the iteration process. This phenomenon may be attributable to the fact that the
expected deformation beyond these loads could not be obtained by the iterative process.

6. Conclusions

This paper investigates the postbuckling response of piezoelectric FGM hybrid rectangular plates under
the combined action of uniform temperature change, edge compression, and a constant applied actuator
voltage based on Reddy’s HSDT. A semi-analytical DQ-based iteration technique is used to determine the
thermo-electro-mechanical postbuckling response for plates with two opposite clamped edges. Postbuckling
equilibrium paths are presented for ZrO,/Al rectangular plates in terms of the postbuckling load/tempe-
rature parameter versus central deflection. Dimensionless critical buckling load and temperature parameters
are given in tabular form for clamped hybrid plates. Our results indicate that for hybrid plates which are
not fully clamped, wherein bending curvatures appear from the commencement of loading, bifurcation
buckling does not exist due to the bending—stretching coupling effect. Furthermore, secondary instability
occurs in the thermo-electro-mechanical postbuckling equilibrium paths in many cases. The application of
negative voltage in the actuator layers can improve the buckling and postbuckling strength, but this effect
tends to be weaker as the side-to-thickness ratio a/h decreases, and seems to be very slight when a /A reaches
10. The effects of material composition, temperature change, in-plane forces, and boundary conditions on
the buckling and postbuckling behavior of hybrid plates are discussed and demonstrated through illus-
trative numerical examples.
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Appendix A

Dimensionless quantities of y;; and y,; are given as follows:

* x 11/2 * x 11/2 * *
Y14 = [Dzz/Dn] / y  Voa = [An/Azz} / y Vs = _AIZ/AZZ
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(Y110: Yi2s Yuia) = et [y, (Fy + Fy + 4F) /2, Fy) /Dy
(120, 7122) = (D) — e1fy), (Dy, — e1Fyy + 2D — 2e1F)] /Dy,
(7131, 7133) = (D — ey + 2Dgg — 2¢1F), (D3, — e1hy)] /Dy
(V140 V1425 V14a) = [B3y, (Byy + B3, — 2By), B, /A
(212 Ve12) = [(247, + Ag6) /2, 41/ 43,
(220, 7222) = [(B3y — c1E3)), BYy — Bgg — c1(Efy — Egq)]/A
(7231, 7233) = [B3, — Bgg — c1(E3, — Eg), (B}, — c1E],)]/A
(V240 V242> Voaa) = €1[E5y, (BN + B3y — 2Eq), B /A
(1310, 7312) = e1[(F}y — eHyy), (Fy) + 2Fg — e1(H}y + 2Hg))] /Dy,

(7320, 7322, V331) = [(D}y — 2e1Fy) + C%Hﬁ)a (D — 2c1Fgs + cfH&),DTZ + Dys
—ci(Fy + Fy) + 2Fg) + C%(Hl*z + Hgy)] /Dy,

(Vanr, va13) = e1Fy + 2Fg — el(Hyy + 2Hgg), Fy, — c1Hy,] /Dy,

(7430 Va32) = [(Digs — 21F g + ciHg), (D5, — 2¢1F5 + ¢iHy, )] /Dy,

(731, 741) = [(45s — 6c1D5%5 + 9C%Fs*5)v (A3 — 6c1D}y + 96%17:4)]/D11

(511, V512, Vsies V17> Vs18) = [BYy — c1EYy, By — 15y, Bgg — c1Egq, By, — 1By, By, — e1E5,) /A
(Vei1> Vo120 Ve33) = (A1, AT, Agel /A%

(Y711, 7712, V7215 V22 V733) = [B11, Bla, By, By, Bl /A

(a110> Vari2s Yannzs Yanna) = (D) — a1 FYy), (D3 — 1Fy)), eilFyy, ey ] /DY,

(V41205 Vna22: Varazs Yana) = [(Dy — €1FYy), (D5 — €1Fyy), e1Fyy, elFy] /DY

(Var31> Var3ss %31:%35) = [(Dgs — c1Fg), c1Fgs, €1 (Feg — c1Hgg), C%Hg%]/DTI

(“/plova127“/p13a Vp14) = a[(Fy — eldyy), (F, — ciHyy), elHyy, e H ) /Dy,

("/pzoﬂ’pzz»?’pzsa Vp24) = c[(Fyy — eify)), (Fy, — c1Hy,), e1Hy;, ¢1H5,] /Dy
(“/pls,?’plga“/pzsaVp28>7p37) = a[E3), By, By Eny Eggl /A

(Y1t Y21 Y1) = [2¢1(e1Hgg — Feg) /Dy (Bgg — c1Eg6) /A, (Dg + Cst*s — 2c1Fg) /Dy

(“/le Yo12> V0209 VQ22) =0 [CIHI*I/DTU 9 (4Hg6 + Hl*z)/DTI’E;I/Av (2E26 - ET])/A}
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(VQsoa Y0325 VQ34) = al[(F, — af)), 2(Fg — c1Hgg), (Fiy + 2Fg — ciHy, — 2e1Hg)] /Dy,
1> 7r2) = (A};,A;)aQ/IOOOaC(DTIDEZ)I/Z, (V74> V1> V175 V1) = (D)T(,D;,F;,FYT)az/lOOOocCAD’l‘l

oy \1/2 *
(Ve1> Ve2) = (AEaAE)aZ/(DuDzz) / v (VEa» Vs> VETs VEs) = (D)E(,D];;,F;,Ff‘)az/AD“
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